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A universal description of the low-energy properties of one-dimensional quantum fluids,
based on a harmonic theory of long-wavelength density fluctuations with use of renormal-
ized parameters, is outlined. The structure of long-distance correlations of a spinless
fluid is obtained, showing the essential similarity of one-dimensional Bose and Fermi
fluids. The results are illustrated by application to the one-dimensional Bose fluid with
5-function interaction.
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A recent study" of the one-dimensional (1D)
Fermi fluid led to a simple low-energy descrip-
tion of it as a "Luttinger liquid": The low-energy
effective Hamiltonian could be based on the spec-
trum of the Luttinger' model (which has a non-
interacting elementary excitation spectrum of
harmonic density fluctuations), plus residual
anharmonic couplings that vanished at low ener-
gies; the structure of the theory was reminiscent
of Fermi-liquid theory. In this Letter I report
that the concept of an effective harmonic-fluid
description applies quite generally to 1D quantum
fluids independent of statistics, and the structure
of their correlations becomes clear once a repre-

sentation of the density operator has been con-
structed to reflect correctly the discrete particle
nature of the fluid. Planar spin chains with axial
symmetry can also be understood as a Bose
fluid of "magnon" excitations about a fully aligned
state. The theory of 1D quantum fluids can be
applied to extract information from the solutions
of exactly solvable (but opaque) models such as
the Bose gas with finite-strength 6-function inter-
action. '

The Fermi fluid results obtained in Ref. 2

through Luttinger model techniques can be ex-
tended to the Bose fluid by considering the spin- —,

'

Luttinger model with attractive 2k & scattering
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which induces pairing and a gap in the spin excita-
tion spectrum. ' The remaining low-energy charge
degrees of freedom are decoupled from spin de-
grees of freedom, and can be identified with a
Bose fluid of Cooper pairs. However, it emerged
that the low-energy structure of the Bose results
thus obtained (and the original fermion results)
can be independently reproduced from the study
of symmetrized and antisymmetrized states of a

harmonic chain. ' The high-energy structures of
the Luttinger and harmonic-chain models are
quite different; the equivalence of their low-en-
ergy properties suggests that a simple model-
independent derivation is possible. This is pre-
sented here.

I consider a spinless Bose or Fermi fluid with
density p, =N/L, and periodic boundary condi-
tions +(x+L) =+(x):

H =(A '/2m) Jdx i
V4' i'+ —,

' J jdx dy V(x —y)p(x) p(y) .
I first discuss the Bose fluid. It will be useful to
use the density-phase representation 4& (x)
=

I [p(x)] 'i'I exp[i j(x)], ~here

[p(x), exp(iqr(x')]] = 5(x -x')exp[i cp(x)].

Low-energy properties of the fluid are dominated

by long-wavelength zero-point fluctuations of
density with wave numbers «p„and a local fluc-
tuation field II(x) can be introduced by consider-
ing the "smeared" local density p(x) —p, +II(x),
averaged over lengths» p, '. In the subspace
of low-energy states where fluctuations of II(x)
are small, y(x) and II(x) can be treated as con-
jugate canonical fields, [y(x), II(x ')] = ib(x -x ').
I note that periodic boundary conditions on the
particle field 4'(x) allow topologically excited
states of the phase field with p(x +L) = y(x) + IIX,
J an even integer.

It is essential to construct a representation of

p(x) =[p.+ll(x)] Z exp[i2m0(x)). (2)

The m =0 term of this sum is just the "smeared"
or long-wavelength approximation. Since (up to
a multiplicative renormalization factor) the
square root of a ~ function is also a 5 function,
we have

the unsmeared density operator that reflects its
discrete character. This is achieved by introducing
a new field 0(x) satisfying V0(x) =~[p, +II(x)J. Its
boundary conditions are 0(x +L) = 0(x) + vN. 0(x)
increases monotonically by v each time x passes
the location of a particle. Particles are thus
taken to be located at the points where 0(x) is
a multiple of ~, allowing the density operator to
be expressed as p(x) = V0(x)$+„5[0(x) -nv]], or,
equivalently,

4', t(x) - [p, + II(x)]'i'( Q exp[ im0(x) J ]exp[i' (x) J.
m even

(The multiplicative factor is not determined independent of the high-energy cutoff structure. )
The commutation relation between q(x) and 0(x) is [ y(x), 0(x'}]=(—,'~i)sgn(x -x'), and exp[i0(x)] alter-

nates between values +1 at the locations of consecutive particles. The Fermi field is thus easily con-
structed as 4F (x) =NB (x) exp[i0(x)] (essentially a Jordan-Wigner transformation').

@Ft(x) -[p, +II(x)]~'( P exp[ im0(x)]] exp[i q(x)].
m Odd

(4)

The selection rule on the topological quantum number J due to periodic boundary conditions is slightly
modified: N+4 must be even, i.e. , (-I) =(-I)".

It is now appropriate to go to Fourier-transformed field variables:

pv '»
0(x) =0, +Nx/L —i Q — e ~~'&sgn(q)e""(b, t+b, ),

cp (x) = cp 0 + coax /L —t e- « ~e'~" (b, '- b, ),

where b, t, q w0, are boson creation operators for the long-wavelength density-fluctuation modes, q(q)
is a free Bogoliubov transformation parameter, and (since density fluctuations with wavelengths «po
are excluded) sums over q are restricted to iqi( p, . The pairs (N, y, ) and (J, 0,) are conjugate action
angle variables satisfying [N, exp(iy, ]]=exp[i',], etc. Note that a global shift of 00 moves all the
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particles in one direction, and so the mean current operator j is w d&,/dt.
If the Hamiltonian (1) is now linearized in II(x), a harmonic form is obtained, and easily diagonalized

by choice of y(q):

a =—Jdx[v~(vy)'+o„(v9- ~p, )']=A{+~, b, b, +-,'(p/L)(v„(N-1v, )'+'v~ J']];
q AP

P=h(vXJ/L+ Q qb, tb, ).
q NO

Here o„=mhp, /m, and o„=(~hp, ') 'v, where v is the compressibility per unit length; ~, -o, iqi as q-0, where the sound velocity o, of density fluctuations is given by v, = (o„v„)' ' =(K/mpo)' 2, the stan-
dard result for a ID fluid. The coefficient v J is independent of the interaction term, as a consequence
of Galilean invariance, but n„ is controlled by the tme compressibility ~, which includes the effects of
renormalizations due to short-wavelength nonlinear terms not included in the linearized form of the
Hamiltonian. As q -0, the Bogoliubov transformation parameter is given by expi 2p(q) J

- (o„/o„)~'.
In the linear approximation (6), the current j = & dU, /dt is given by v ~(J/L); the topological excita, -

tions of the phase field are thus elementary current quanta. Note that the elementary excitation 4- J
+2 carries an intrinsic momentum 2mhpo.

Asymptotic correlation functions at separations x» p, are easily evaluated with use of (2)-(5); at
T=O,

(p(x)p(0))-p, '(I+7I(2vp~) '+ QA (p, x) "cos(2~mp~)],
m=1

(+B'(x)+B(0))-p.(p+) "
& 5~ & (p~) "cos(»~p~)),

m=O
(8)

( Q 1'(x) Q (0) ) p (p~) ll 1 i Q C (p~) (lB+ 1/2)

m=O

The correlation exPonent q= 2(o„/v„)'i' For.
free fermions, 7l=2; for free bosons (z-0), q

The coefficients A, B, and C are model-
dependent quantities dependent on the short-wave-
length structure of the fluid. These results show
the fundamental similarity of boson and fermion
systems in 1D where (in contrast to more dimen-
sions) the symmetry of a wave function cannot be
tested by a continuous change of coordinates that
exchanges particles without close approach (colli-
sion). Thus interaction and statistics effects can-
not be separated. The low-energy properties of
the fluid are fixed once its particle density,
kinetic mass density, and compressibility are
given (though the relation of the latter to the
microscopic interaction doe+ depend on statistics);
the only remaining difference between Fermi and
Bose systems is attributable to the different
selection rules on the current quantum number J.
The leading terms of the sums in (4), (7), and
(9) are essentially the results first obtained by
Luther and Peschel' in studies of the Luttinger
model.

The expression (2) for p(x) allows the effect of
a periodic substrate potential V- J dx cos(ix) p(x)
to be studied. Note that in (6), ~ 'vq(x) is the
conjugate field to 9(x), and if A. = 2vnp„ terms of

sin[ 2v(m+ —,')p~] J . (9)

sine-Gordon" type are generated. The fluid state
is only stable if the sine-Gordon coupling param-
eter'0 satisfies P'&8v, i.e. , ri&-,'n'. Even if the
potential is incommensurate with the mean par-
ticle spacing, it gives rise to renormalizations
of v~ and v„ that drive the latter away from the
Galilean-invariance value.

The simple low-energy structure of 10 quantum
fluids is exhibited in detail not only by the Lut-
tinger and harmonic-chain models, but by the
less trivial integrable models solved by the
Bethe Ansatz. " The models have anharmonic
interactions, but the asymptotic low-energy spec-
trum of models with a fluid ground state has the
harmonic form (6): The parameters v~, o„, and

v, can be explicitly calculated from the Bethe-
Ansatz equations, " and quite generally satisfy
the harmonic relation U, =(v„v,)'t'.

In general, the correlation functions of the inte-
grable models have not so far been obtained (this
is an outstanding, up-to-now intractable problem);
an exception is Sutherland's model of the non-
relativistic spinless gas with 1/r' interaction. "
In this case, at particular coupling strengths
such that g = 1 or 4, density correlations are
known"; the rj =4 Bose single-particle correla-
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tions were also found. " Asymptotic properties
of these correlations are in complete agreement
with (7) and (8), as the spectrum is with (6).
Free spinless fermion systems (ri= 2) are also
in agreement, as is the hard-core 6-function
interaction Bose gas, which is related to free
fermions by a Jordan-Wigner-type transforma-
tion. In the latter case, recent asymptotic ex-
pansions" up to x "for the Bose single-particle
correlations are in full agreement with (8).

A system of long-standing interest is the ear-
liest integrable fluid, the nonlinear Schrodinger
equation, or nonrelativistic Bose fluid with finite-
strength 6-function interaction, V(x) =c5(x), for
which the spectrum was exactly obtained by Lieb
and Liniger. ' The dimensionless coupling y=h'c/
mp, diverges in the dilute limit, where the sys-
tem becomes effectively hard-core, equivalent
to a free spinless Fermi gas. The harmonic re-
lation v, =(v„v„)' ' was implicitly found by Lich, '
who reports a relation equivalent to v, ~(v~)'/'
(v~ is fixed by Galilean invariance). Lich ex-
amined the Bogoliubov approximation results for
v, : (i) v, =v„(y '/~), (ii) (v„v~) '=v„(y '/
v)[1 ——,'(y'/'/7i)] ~'; the second expression, de-
rived from the Bogoliubov approximation for the
ground-state energy, was indistinguishable from
the exact numerically obtained result up to an ap-
parently large coupling y ~ 10. Actually, since
v, =v„exp[-2q(0)], and pe[x-2y(0)]=2' ' rises
to the "hard-core" limit I in the strong-coupling
limit, it is seen that y' '/v ~ 1, or y ~ v', is the
natural limit on the weak-coupling regime. jAn
expansion in the strong-coupling limit, treating
the system as equivalent to a spinless Fermi gas
with weak attractive coupling, gives v, = v„[1—8/
y+0(y )]' ', leading to similar conclusions. )
Bethe -Ansat& equations for the correlation expon-
ent r~ are easily obtained from the general dis-
cussion in Ref. 12: in terms of an integration
range parameter A,

2v/y= J dx f(x; A); g=2[f(A;A)] ', (10)

where f(x; A) is the solution of a Fredholm equa-
tion:

f(x; A)

=1+sr J dy[1+(x -y)'l f(y' A)

The picture described here can be extended to
fluid systems without Galilean invariance, where
v„ is no longer coupling independent, but still
defines an effective kinetic mass density for bulk
flow of the fluid. The treatment of fluid Bethe-
Ansatz-solvable systems in Ref. 12 applies equal-
ly well to lattice fluids such as the spinless ferm-
ion chain studied in Ref. 1 (for which the calcu-
lated phase diagram of v„as a function of fluid
density shows the effects of departures from
Galilean invariance), and Lorentz-invariant sys-
tems such as the sine-Gordon soliton fluid, for
which consideration of a Lorentz transformation
gives v„=vlcc'p, /p, where p is the chemical po-
tential. " A treatment of axially symmetric spin
chains with arbitrary S, very much along the
lines of that described above, will be reported
elsewhere.
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