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A model describing the relaxation dynamics of an interface of Ising-like systems is
introduced. By means of renormalized field theory in d = 1 +¢ dimensions the dynamic
critical exponent is found as z = 2 +e —3 €2+ 0 (e3). Interpolation with the known result
near four dimensions yields good agreement with a high-temperature expansion and with
recent real-space and Monte Carlo renormalization-group calculations in two dimensions.

PACS numbers: 64.60.Ht, 68.30.+z

The interest in the study of dynamic critical
phenomena over the past two decades has been
focused primarily on bulk properties.'! Compara-
tively little is known about the critical dynamics
of surfaces or interfaces.? In particular no model
has been developed so far which permits a sys-
tematic analytic investigation of time-dependent
fluctuations of an interface. In this Letter we
propose such a model for the interface of an Ising-
like system whose dynamic critical behavior can
be studied by means of renormalized field theory
near the lower critical dimension® d, =1.

This is a purely relaxational model which con-
stitutes the simplest dynamical generalization of
the static version recently introduced.* It pro-
vides a new, systematic approach to the unre-
solved® problem of predicting the dynamic critical
exponent z for the 4 =2 kinetic Ising model® or
for the continuum version,” model A. Our (two
loop) expression for z is z =2 +€ —€2/2 +O(€®),
where € =4 — 1.2 A Padé interpolation between d
=1 and d =4 using the two-loop result from the
four-dimensional expansion leads to good agree-
ment with the high-temperature expansion of
Récz and Collins® as well as with recent real-
space and Monte Carlo renormalization-group
calculations by Achiam,’ by Mazenko et al.,® and
by Tobochnik et al.® in 4 =2 dimensions. An ex-
tension of our approach to three-loop order ap-
pears feasible. Since z is known to three loops®
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near d =4, it may be interesting to compare the
three-loop interpolation with other results. Fur-
ther, our methods may be generalized to study
the dynamic universality classes of models’ B,
C, and D. In particular, an analysis of the inter-
face of liquids [model H (Ref. 10)] in 1 +€ dimen-
sions would be of great interest but requires the
inclusion of reversible flow terms.

Following Wallace and Zia* (WZ), we consider
a (d -~ 1)-dimensional interface imbedded in a 4-
dimensional bulk system. The static behavior of
such a model is described by the partition func-
tion JDf exp(~3/T) with

=50, +4 [d" e m? 2y 3, = [d* Vg, 1)

where g =1+ (Vf)?. Here, /(%) is a local height
variable!' describing the fluctuations of the posi-
tion of the interface at the point X relative to a
reference plane f(X) =0. This plane is defined via
the pinning potential m% 2/2, which is necessary
to stabilize the interface for d <3. The ¥, term,
being proportional to the total area of the inter-
face (without overhangs), is just the surface ten-
sion energy. WZ showed that it is renormalizable
near d =1. Thus a systematic expansion in €
exists for describing the static critical proper-
ties.

A proper description for the dynamics of the
fluctuating variable f(%,t) is not obvious, even for
the simplest case of pure relaxation for a system
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with a nonconserved order parameter. For ex-
ample, one might expect an equation of motion

of the form f =8f/8t ==\33C/8f +¢, with A >0 being
the Onsager coefficient and { a random force.
From discussions below, it will be clear that
there are difficulties with such a model. Instead,
we propose the equation of motion

F==2g"2630/5f +¢, @)
&, & ) =20g"26& -X")0(t =1'), ®3)

with a Gaussian random force. Because of the f-
dependent factor Vg, Egs. (2) and (3) should be
complemented by an interpretation rule which
guarantees relaxation towards the correct equilib-
rium distribution exp(-H#/T'). This, however,
turns out to be automatically fulfilled within the
dimensional regularization scheme employed in
the field-theoretic treatment below.

We briefly discuss three main salient aspects
of our model: (i) physical interpretation, (ii) Eu-
clidean covariance, and (iii) relation with model
A,

(i) The physical picture associated with (2) is
especially transparent if one recognizes that
f/Vg is a velocity perpendicular to the interface.
This is so since Gf/\fg is the normal displace-
ment of the interface given an infinitesimal change
inf (at X) to be of. On the other hand, 63C,/6f is
the increase in energy associated with the change
in area of the surface element at X. 0JC,/0f may
also be related to the (extrinsic) curvature tensor

Kij=[vivjf"' (Vikavjka )g-l]/\[g,

where i,j,k=1,...d - 1. One verifies that 8¢,/
Of = - TrK which leads to the physically reason-
able picture of the total (local) curvature being
the hydrodynamic driving force.

(ii) Part of the full d-dimensional Euclidean
symmetry of the Ising-like bulk system is non-
linearly realized*'? in the static model (with m2?2
=0). In particular, consider a z-x; rotation by
an infinitesimal angle 6;. Denoting the infinites-
imal change in a quantity @ by 6;6;Q we have
6,f=x;+fV,f so that 6,f=V,(ff) and 6 Vg
=V,(fVg). Further, since 3, is an invariant
functional of (Vf)?, we have bi(pfico/bf):fvi(bﬁ(’,o/
of). Thus, the naive guess of f = — A8¥C,/0f is not
even a covariant equation. On the other hand,
g/263¢,/5f indeed transforms as f , verifying that
the systematic part of (2), for m2=0, respects
the full Euclidean symmetry as expected from
the physical interpretation given above. The
covariance of our model, including the random
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is most efficiently discussed in terms
113

part g,
of the dynamic funtiona

I, F/r
= Jatat=x[- xg 272+ F (f +ng /2050 /87)/T, (4)

where f is a response field.!* This J (with m?=0)
is invariant since bif=fvif as follows from de-
manding the invariance of [ff. Conversely,
Euclidean invariance is so strong that the form
(4) for J may be determined uniquely within the
dimensional regularization scheme. Specifically
we impose on J the following: (a) detailed bal-
ance with 3C being the static Hamiltonian, (b) lo-
cality, (c) presence of (Vf)? terms only, a neces-
sary condition for renormalizability, and (d) in-
variance under the transformations specified
above. The first condition implies that the co-
efficients of 2 and 7 63¢/5f are equal and oppo -
site.'® The uniqueness of J under these con- '
straints is paralleled by the uniqueness of ¥, in
statics. Since this invariance of 3¢, is responsible
for the renormalizability of the static theory, we
believe that it will also ensure the renormaliza-
bility of our model.

(iii) Another appealing feature of this model is
that it can be obtained directly from the ordinary
model A4,

p==TO6F/b6¢+6,
F=% Jatx[ (VR + uX(¢* = 1)2],

with a one-component order parameter ¢ and a
random force 6, by taking the low-temperature
limit p? =, in a manner similar to Diehl, Kroll,
and Wagner.'® Unlike their approach, we employ
a saddle-point method, avoiding the lengthy proc-
ess of resumming a perturbation series. The
time-dependent ¢(X, z, t) is decomposed into two
parts:

WX, 2, 1) = X(2 = (%, 1)) + (%, 2, 1), (6)
where x(&)=tanh(u£/vg) is the kink solution*®
which minimizes F. If we take nto be O(1/p), a
consistent, systematic expansion in powers of
1/u follows. Note that the only time dependence
in the first term of (6) comes through f(X, t),
corresponding to the statement that, as T-0(u
—), the most important dynamical variable is
f. All degrees of freedom other than f can be
projected out by the scalar product (x,, A)
= [T, dz(9yx/3z)*A applied to (5) with ¢ replaced
by (6). This leads to Eqgs. (2) and (3) with I'=2x,
Another way is to begin with the dynamic func-
tional for model A, J[ ¢, @], and to take the limit

(5)
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u—. This yields (4) with f being proportional to
(xz, ). It is reassuring that different approaches
lead to the same model.

Given J, Eq. (4), the program for studying
dynamical critical behavior via the renormaliza-
tion group is standard.!” Apart from the renor-
malization of the static* bare quantities (denoted
by a subscript B from now on) Ty, mp, and fg,
we need to renormalize the dynamic ones A, and

fB:
Te=KZ T, mg=2Z,m?, fg=f,

AB=ZTWIZ>\A’ fB=ZTf, (7)
where T is now the dimensionless renormalized
coupling.

Unlike for model A, Z, is nontrivial resulting
from the extra factor Vg in Eq. (2). The dissipa-
tion-fluctuation theorem no longer determines
Z, in terms of the renormalization of /. As a
result of pure gradient couplings, f is renormal-
ized simply by Z,. Using minimal renormaliza-
tion we find to two-loop order Z, =1+ T2/4¢
+0(T?3). Together with the static result* Z,™
=1-T/e- T?/4e€ this yields the function & 7)
=(kd,InA),=T+0O(T?). It enters in the renormal-
ization-group equation

[ K8+ BB o+ 1, (m28,2 = N) + EA8, | Ty =0 (8)

for the vertex functions I'j, (N and N denote the
number of external f and f legs of the coi‘respond-
ing diagrams). The functions B(7T) and v,(7) are
given in statics.* At the critical fixed point T*
=€— €2/2+ 0(€?) we thus find the dynamic critical
exponent 2=2+ £(T*)=2+ €~ €2/2+ 0(€®) appear-
ing in the characteristic frequency w, (%, £)
=kfQ(k£). The latter determines the wave-vector
and temperature dependence of the relaxation
rate of fluctuations of the interface variable f.
Although there is no rigorous proof that z is also
the bulk dynamic exponent, we would argue along
the lines of WZ that, as €—~0 and 7,—0, the only
important fluctuations of the bulk system come
from the soft Goldstone modes. Furthermore,

the close relation between our model and model

A established above supports our conjecture that
2z can be identified with the bulk exponent of model
A.

Setting €=1 in our expression for z yields z
=2.5 in d =2 dimensions. A more reliable value
is obtained by a Padé estimate for z which inter-
polates between our result near d =1 and the two-
loop result near d=4. The latter is 2+ c(4 -d)?
+0((4-4d)%); c=[61n(4)~-1]/54=0.013. The

z-2
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FIG. 1. The critical exponent z — 2 as a function of
dimensionality d according to Eq. (9).

interpolation gives (see Fig. 1)

6c (4 - d)(d 1)

2= 2= 3T600) = (4730 (2 = 3O0& ° (9)

Setting d =2 in this formula yields z ~2,126, which
is in deceptively good agreement with the high-
temperature series value of Ricz and Collins.®
This also agrees well with real-space and Monte
Carlo renormalization-group calculations.®

In conclusion, we wish to emphasize that our
model for the dynamical behavior of an interface
has sound physical interpretation, respects the
full d-dimensional symmetry, and is intimately
related to model A. Work on the generalizations
to other models is in progress.
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A universal description of the low-energy properties of one-dimensional quantum fluids,
based on a harmonic theory of long-wavelength density fluctuations with use of renormal-
ized parameters, is outlined. The structure of long-distance correlations of a spinless
fluid is obtained, showing the essential similarity of one-dimensional Bose and Fermi
fluids. The results are illustrated by application to the one-dimensional Bose fluid with

6-function interaction.

PACS numbers: 67.40.Db, 05.30.-d

A recent study’'? of the one-dimensional (1D)
Fermi fluid led to a simple low-energy descrip-
tion of it as a “Luttinger liquid”: The low-energy
effective Hamiltonian could be based on the spec-
trum of the Luttinger® model (which has a non-
interacting elementary excitation spectrum of
harmonic density fluctuations), plus residual
anharmonic couplings that vanished at low ener-
gies; the structure of the theory was reminiscent
of Fermi-liquid theory. In this Letter I report
that the concept of an effective harmonic -fluid
description applies quite generally to 1D quantum
fluids independent of statistics, and the structure
of their correlations becomes clear once a repre-
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sentation of the density operator has been con-
structed to reflect correctly the discrete particle
nature of the fluid. Planar spin chains with axial
symmetry can also be understood as a Bose

fluid of “magnon” excitations about a fully aligned
state. The theory of 1D quantum fluids can be
applied to extract information from the solutions
of exactly solvable (but opaque) models such as
the Bose gas with finite-strength 6-function inter-
action.*

The Fermi fluid results obtained in Ref. 2
through Luttinger model techniques can be ex-
tended to the Bose fluid by considering the spin-3
Luttinger model with attractive 2k scattering
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