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Computer Estimates of Meson Masses in SU(2) Lattice Gauge Theory
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It is shown that in an SU(2) lattice gauge theory, in the approximation where internal
quark closed loops are neglected, chiral symmetry is broken. With use of partially con-
served axial-vector current f ~, the bare masses of the u and d quarks, and the p and 0
masses are estimated.
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Recently some progress has been made in nu-
merical simulations of theories with fermions. ' '
Although in a complete computation the effects of
fermionic closed loops must be taken into ac-
count, a reasonable estimate of the hadron spec-
trum can be obtained by eliminating all internal
quark loops (quenched case, see Ref. 2). In this
way the Zweig rule is enforced for all flavors. In
this note we present a study of chiral-symmetry
breaking and of the m, p, and 5 masses for the
SU(2) gauge theory in the quenched approximation.
A similar study for the SU(3) gauge theory, in-
cluding also baryons, can be found in Ref. 4. The
results obtained are rather satisfactory.

Let us begin discussing our strategy in the con- = Jd) [X]Tr[G(x, O[a)G*(x, O[a)]. (2)

tinuum case; later we will adapt it to the lattice
version of the model. We consider the fermionic
Euclidean action

S~= fd~xg(P+m)((,

where D „is the covariant derivative in presence
of a gauge field A „. If G(x, 0~4) is the fermionic
Green function with A& as background, and d @[A]
is the probability distribution of the field A (nor-
malized to 1), the following relations hold:

&g(O)g(O)&= Jd) [a] Tr[r(O, Olg)1,

& 0(x)),N(x) 0(O) r, g(0)&
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The fact that g) is an anti-Hermitean operator
with spectral density p(iA) implies that

lim (tP(0)g(0)) = —p(0),
m O V

Tr[G(O, O)A)]

=m Jd xTr[G(x, O~A)G*(x, O~A}]. (8)

If p(0) eo, when m-0 chiral symmetry is broken,
and if the integrand in Eg. (2) is finite in this lim-
it then the Goldstone theorem holds.

A natural procedure to evaluate the expectation
values of composite field operators is the follow-
ing: A„ field configurations are generated with
probability distribution d p, [A] by a Monte Carlo
simulation (suitably generalized if one wants to
include the effects of inner fermionic loops' ');
the propagator G(x, O~A) is then calculated by
Monte Carlo like techniques or by relaxation
methods. If the effect of closed loops is included,
Eq. (2) (and its obvious generalizations) holds for
those operators which do not have the internal
quantum numbers of the vacuum.

In the relaxation method one obtains the Green
tunctions as the t-~ limit of G, (x, O~A) satisfy-
ing

dG, (x, OiA)/dt=(P+ m)G, (x, OiA)+ 5(x). (4)

On the contrary, direct Monte Carlo simulations
cannot be performed with a first-order formal-
ism." However, one can adapt the standa, rd

Langevin formulation to this case by writing

d(p,. (x, t)/dt

= [(-I)'P+m]y, . (x, t)+ q(x, t) i=1, 2, (5)

where g is a Gaussian stochastic white noise:
((q(x, t)q(x', t '))) = 25(t- t') 5( x- x') (the double
angular bracket denotes an average over the
noise). It is straightforward to check that

lim (( y, (x, t) p, (y, t)))

1
x — — y =-G x,yA .

Let us briefly underline the main differences
between the Langevin and the relaxation tech-
niques: Using the Langevin equation we can com-
plete G(x, y~A) for all x and y at the same time,
while in a comparable computer time the relaxa-
tion procedure gives only G(x, 0

~
A). On the other

hand the relaxation procedure gives exact results
for G(x, y~A), while statistical errors are pres-
ent with the Langevin method. So we can conclude
that to measure G(x, y ~

A) at x-y, where G is
large, the Langevin approach is the most suitable,
whereas for computing G in the large-

~
x —y~ re-

gion, where G itself is small, the relaxation
method should be used. The second is the situa-
tion one encounters in the computation of the
mass spectrum of the theory.

On the lattice we used the fermionic action' '

S(g) =Q,. g, [(D„g),+(-1)"(D, g); +(- 1)"' (D, g); +(-1)"+ ' (D g), + m$; ], (7)

where D, (i = x, y, z, t ) is the covariant version of
the central first derivative 8,. ((B,. rP), =2 [g(T.
+ n,. ) —f(] —n, )]j. It is known that this action
describes four fermion flavors and is invariant
under an SU(4) internal flavor group. As dis-
cussed in Ref. 2, the quenched correlation func-
tions for the two-flavor theory can be obtained
simply by dividing by a factor of 2 the correlation
functions computed with the full action (7).

No multiplicative factor is needed in the compu-
tation of the masses. However, if

P(i j)= JR[A] Tr[G, (i, j~A)G"(i, j~A)], (8)

particles with different spin parity will appear as
singularities at different corners of the Brillouin
zone; this effect is typical of the approach of
Refs. 5 and 8.

If w and p are the lowest-mass particles it is

easy to check that asymptotically

P(n) —= a,(n, ) = exp(-n, m, ],
nx ~ ny' "z

Z P(n)((-I)""+(-I)"'+(-I)"']
nx, n&, nz

—= a~(n, ) = exp(- n, m ] . (10)

Similar expressions are also valid for the other
particles of the theory.

This completes the description of all the basic
machinery we used to perform the computation.
As a first step we generated a few equilibrium
configurations for the pure gauge theory, defined
by the 120-element subgroup of SU(2}, Y(the
covering group of the symmetry group of the
iscosahedron): We worked onan 8x8x8x8 lat-
tice, with periodic boundary condition and the
standard Wilson action. '
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We concentrated our attention to the range P
= 2.1-2.4, where P=4/g' is the coupling parame-
ter of the gauge theory. This is the region where
the asymptotically free behavior of the string
tension appears to set in. To relate lattice spac-
ing a to ~mom we use

A = (m/a) [(6w'/11)(P - 1.08]""'
x exp]-(3w'/ll)(P - 1.08)]. {11)

With Am pm 250 MeV, we find that the size of the
box goes from 2.7 to 1.3 fm. The momentum cut-
off Cs=—w/a (i.e., the boundary of the Brillouin
zone) ranges from 1.8 to 3.9 GeV. In Ref. 9 a
parameter

A, =A, (1 —1.08/P) "" (12)

was used. A, and A, are asymptotically
equal, but in the P range we are considering they
differ by about 30%. With the value of the string
tension K determined in Refs. 9 and 11 we obtain
A, =250 MeV if vA =500 MeV.

We treated both Eq. (4) and (6) implementing
the time derivative by a second-order Runge-
Kutta algorithm"; (T|g) has been computed with
both methods, obtaining compatible results (the
values found by use of the Langevin equation have
small statistical errors). As a check we have
computed (gg) as function of m at P=O. The re-
sults are shown in Fig. 1; the continuous line is
the prediction from the limit N-~."The very
good agreement implies that the 1/N' corrections
are negligible (as expected) for N= 2.

In the whole P range we have explored, we find
clear evidence of the fact that (g g) gO in the limit

m -0 [the value at m =0 is computed by extrapo-
lating the data obtained with m varying in the
range (0.05-0.5)a ']. From renormalization-
group arguments we expect

(13)

for P-~. In Fig. 2 we plot (s((if))'~' versus P.
The continuous line represents the quantity
RA(2as) '~" with A=1.75. The fit is satisfactory,
and we can provisionally assume 8=1.75 + 0.1.

The pion and p masses have been estimated by
looking at the large-distance decay of the corre-
lation functions; for the computation of these
quantities we used the relaxation method. The
number of iterations needed for a good conver-
gence ranges from 50 to 500. The accuracy
reached with use of the relaxation procedure can
be estimated by checking the validity of the sum
rule (3); this is also a consistency check for the
algorithm. With a lattice of size 8', the largest
distance at which correlation functions can be
computed is 4; in order to remove finite-size ef-
fects from the t direction we have constructed
lattices of size 8'& 16 and 8'& 32, respectively,
by duplicating and quadruplicating the same gauge-
field configuration. (This procedure is justified
by the short range of the gauge field correlations.
Indeed an 84 lattice would be adequate if one could
obtain the exact spectrum for the propagation of
fermions. Iterating the gauge-field configuration
in time allows a good determination of the lowest
masses in this spectrum, through the rate of de-
cay of the Green functions. ) Most of our esti-
mates for the values of the masses (in the P range
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we are considering) have been obtained from the
8'&& 16 lattice (this could be impossible for higher
values of p). So the results from the 8'&& 32 lat-
tice were mainly used as a check.

We concentrated our efforts on p = 2.2, which
is already in the scaling region for (Tlg). We
estimated the masses by looking at the rate of ex-
ponential decay of the correlation functions. We
obtained all our results by averaging over four
configurations of the gauge fields. We have a
good control of the w correlation functions (i.e.,
gy, () at a,ll distances (see Fig. 3), while our
statistical accuracy for the p (gy„g) and 5 (g$)
correlation functions is reasonable up to dis-
tances 7 and 5, respectively. In our range of
quark masses (0.3 —0.1 in units of a ') the data
can be fitted by

m, ' =(6.5 + 0.1)m, /a,

m p'-—(1.0 + 0.1)/a'+ m, ',

mp' —m p' ——(0.4 & 0.1)/g'.

Io I I I I I I I I I I I I I . I

0

o IO

Using the partial conservation of axial-vector
current relation m, 'f, ' = —,

'
(g t/r) s„&»m, (f„'"&

=0.95 MeV), we get f, =(0.19 + 0.01)a '. With K
=(500 MeV)' we finally obtain

f„=150 + 10 MeV,

m& ——800+ 80 MeV,

m& ——950 + 100 MeV.

(These errors do not reflect the possible uncer-
tainty in the Monte Carlo determination of the
string tension. ) m, =m, a '~" is renormalization-
group invariant. Its value turns out to be 7 MeV,
in agreement with phenomenological estimates.

Data with lower statistics at P=2.4 seem to in-
dicate

m -710 MeV, f~ 120 MeV.

It is clear that one should extend this computa-
tion to smaller lattice spacing to check the relia-
bility of our results. Doing this would not pre-
sent any problem of principle, and the only dif-
ficulty would be the larger amount of computer
time required. The central processing unit time
needed for the computations we described here
can be estimated to be about 100 h of VAX 780
(the equivalent of about 10 h of CDC), which is
actually not a lot.

We are at present extending our analysis to in-
clude the effects of fermionic loops, following the
method of Ref. 1.
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Stanford Linear Accelerator Center, the Mark 3
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and H. Hamber for clarifying discussions at the
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FIG. 3. Correlation function for the Tt with m = 0.2
and P =2.2
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It is shown that initial-state interactions violate the usual QCD factorization predic-
tions for massive lepton-pair production in leading bvist. The initial-state collisions
correct do/dQ dxF and also smear the lepton-pair transverse momentum distribution.

PACS numbers: 12.40.Cc, 13.85.Kf

A puzzling aspect of standard factorized-QCD
predictions for massive lepton-pair production
in hadronic collisions is the absence of any cor-
rections to the cross section due to the effects
of initial-state interactions. For example, the
elastic and inelastic collisions of a hadron propa-
gating in a nuclear target might be expected to
alter profoundly its constituents' transverse and
longitudinal momentum distributions as well as
their color quantum number correlations. Such
initial-state interactions might destroy any
simple connection between the Drell- Yan' cross
sections and the projectile's structure functions
as measured in deep-inelastic scattering. It
thus seems all the more remarkable that the
standard QCD predictions for do/dQ' are quite
consistent with experiment' (up to uncertain nor-
malization factors) including the important fea-
ture that lepton-pair production in hadron-nu-
cleus collisions is additive in the nucleon number
A at high Q'.

The standard derivations of QCD factorization
for hard inclusive reactions are based on the
organization of all collinear divergences into
universal factors that can be incorporated into

hadronic structure functions, and the demonstra-
tion that infrared divergences cancel in the physi-
cal cross section. In this paper we are concerned
with (s-independent) contributions from initial-
state interactions. ' These come from the region
of integration near the fermion poles and are
away from the collinear region. Such contribu-
tions correspond physically to the usual Glauber
singularities, which occur, for example, when a
fermion scatters in a target and then propagates
nearly on shell over a finite distance before
annihilating. Because one is dealing with nearly
on-shell scattering-matrix elements one cannot
use Ward identities or a choice of gauge to elimi-
nate these contributions. '

In order to illustrate the physics of the initial-
state interactions, we analyze the process &W

—p. p. X to all orders in perturbative QCD. We
neglect only terms of higher order in 1/s. The
leading-order gluon exchange contribution to
initial-state elastic scattering of the active q
on a spectator quark in the nucleon is shown in
Fig. 1(a). To leading order in s the energy de-
nominator after the gluon exchange has the form
y r ~' —2r ~ ~ l ~+ ie, where r j' = s and l ~'/1 - y = -t.
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