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Numerical Estimates of Hadronic Masses in a Pure SU(3) Gauge Theory
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In lattice quantum chromodynamics, the hadronic mass spectrum is evaluated by com-
puter simulations in the approximation where closed quark loops are neglected. Chir31
symmetry is shown to be spontaneously broken and an estimate of the pion decay con-
stant is given.
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In this Letter we present results of a computa-
tion of the mass spectrum of the 1.ighter hadrons
in the SU(3) lattice gauge theory in the approxi-
mation of neglecting internal quark loops. Al-
though these effects will have to be taken into ac-
count in a full calculation, we shall see that rea-
sonable results for the spectrum can be obtained
within this framework. This approximation en-
forces the Zweig rule for all the flavors, be-
comes exact in the limit K- ~, and can easily be
justified for the mass spectrum with phenomeno-
logical arguments. Some numerical simulations
of two-dimensional lattice gauge models also sug-
gest that it might be a reasonable simplification. '
We have found some evidence for this to be true
also in the present case. In this approximation
nonet symmetry holds: Closed quark loops are
crucial to remove the g-p degeneracy. Similar
computations not including the baryons and with
only one form of the fermionic action (the Kogut-
Susskind action) for the group SU(2) will be pub-
lished elsewhere. '

The mass spectrum of the lighter hadrons can
be computed by studying the decay at infinity of
the correlation functions of composite operators.
The key formulas we use are

(y(x)q(x)q(0)q(0)) = fd„[A]G (x, 0;A)G(o, x;A),

g( )P(x)q( )q(0)q(0)q(0))

= f d„[~]G(,0;~)G(x, o;~)G(x, o;a),
where we have suppressed flavor, spinor, and
color indices, and G(x, 0;A) is the inverse of P
+m in a background A& gauge-field configuration.
D& is the covariant derivative and d„[A] is the
probability distribution of pure gauge fields.
These formulas hold for all operators that do not

have the flavor quantum numbers of the vacuum.
In the full theory with nf fermion flavors and vac-
uum polarization effects included we would have

d„[A]=e ~[det(P'+~)]"& dUH,

where SG is the Wilson action for lattice gauge
fields given by

and de is the Haar measure for the group SU(3)
for each link. The sum is over all elementary
squares in the four-dimensional hypercubic lat-
tice of spacing a, and U~ is a product of four
SU(3) group elements around each square. In this
Letter we will discuss results obtained by setting
the determinant equal to I (nz = 0), which is equiv-
alent to neglecting dynamic fermion loops. The
fields A can be extracted by using a standard
Monte Carlo simulation technique, while the in-
verse propagators are computed using iterative
matrix inversion methods. '

When we implement these methods on the space-
time lattice we have to make a choice regarding
the fermionic action. In general we can write' '

&(p, p) = g p„[(y„-r)q„,„—(y„+r)q„„]
n, p

If z = 0 the theory is chirally invariant in the M
—0 limit, ' ' but unfortunately describes sixteen
flavors instead of one. (These can be reduced to
four by an appropriate canonical transformation,
as discussed in Refs. 4 and 6.) If rc 0 only one
flavor is obtained in the continuum limit, but
chiral symmetry is lost on the lattice and can on-
ly be recovered in the continuum limit, as dis-
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cussed in Ref. 3.
In this Letter we present results of a computa-

tion of the hadronic spectrum in the cases y =0
and x = 1 on lattices 6'x 12 and up to 6'~ 10, re-
spectively, and compare the results.

We have used the standard Wilson action for the
gauge fields' and generated the gauge-field dis-
tributions using a modified Monte Carlo method:
We did ten trials for each gauge-field variable
without changing the others. In this way the Mon-
te Carlo method is very similar to the heat-bath
method. We have limited ourselves to a study of
the region of P between 5 and 6.2 (we use the no-
tation p = 6/g, '). The crossover between the weak-
and strong-coupling regimes happens around P = 5

and in the region we have studied one starts to
see the exponential behavior in P of the string ten-
sion as predicted by asymptotic freedom. If for
definiteness we assume Kk = 7x 10 'A, (Ref. 7)
and v'k =420 MeV from the p f g kt-ra-je-ctory,
our inverse lattice spacing ranges from 440 MeV
at P= 5 to 1590 MeV at /=6. 2. At P=5.6 and 6.0
where we have higher statistics we obtain a '
= 660 MeV and a '= 1120 MeV, respectively.

In this interval of P we have computed the ex-
pectation value of (g() at r = 0 in the mass range
yy& =0.1-0.3 on a 64 lattice using the Langevin al-
gorithm of Ref. 8 and the iterative method, and
then extrapolated to gyes

= 0 using a quadratic fit.
We clearly see evidence for ( Pg) e 0 at m = 0 for
all values of P that we have explored. Chiral sym-
metry is spontaneously broken and the usual Gold-
stone theorem holds. The results extrapolated to
gyes =0 are shown in Fig. 1. The line is a fit of the
form

(00) =o[(»s) ""Rvk]'

following the prescription of the renormaliz3tion
group. Here ns = 3/2n (P —2.75) and the scale pa-
rameter of quantum chromodynamics is defined
as

2 — —5]./ 3.2 J.
7T ll

y 2 75)

4 2

x exp —
33 (p —2.75)

The data suggest R =0.90+ 0.05 in agreement with
phenomenological estimates. '

At y = 0 we have obtained some results for the
mass spectrum of the lowest-lying states at p
= 6.0 by computing the propagator G(x, 0;A) for
four different configurations. In the region of gyes

between 0.3 and 0.1 in lattice units we can fit the
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FIG. 1. The quantity (g g)' ' as a function of 1/go'.
The line is a fit that gives (tTIg)' = 1.5(3us) A~~.

data by

m~ =6m/a, m~ =0.5/a +6m/a,

ms = 1.0/a+ 12m.
(5)

m(tt q) = f,'m, ', (7)

we get f„=95+ 10 MeV from the value of (fr() at
P =6 which is 0.043+0.01 in lattice units. While
the masses of the p meson and of the baryon
do not appreciably change when varying p, we
have noticed that f, varies from the above value
at P = 6 to f, = 140+ 10 Me V at P = 5.6. This does
not come entirely as a surprise since f, is more
or less the pion wave function at the origin and is
therefore expected to be a more sensitive quan-
tity than the masses.

We now come to a discussion of the results for
r = 1 (Wilson's fermions). By doing a, fit to the

Here ypg~' is the average mass of the lowest bary-
onic states [something between the nucleon and
the 6 mass; we do not have enough statistics yet
to see their mass difference in this formulation
(r =0)]. This gives the rough estimates

m ~
= 800+ 100 MeV, rp s = 1000+ 100 MeV. (6)

The linear dependence of the pion mass on the
bare quark mass is a consequence of the Gold-
stone theorem. If we use the partially conserved
axial-vector current relation
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data for m between 0.3 and 0.05 (see Fig. 2),
where all the masses are between the low-energy
cutoff at 590 MeV and the high-energy cutoff at
3520 MeV, one finds at P = 6

periment, and this would have given us roughly
the above value for the lattice spacing and v'T
=400+ 50 MeV. The bare quark masses turn out
to be

m ~' = 6.0m/a, m v' = 0.5/a'+ 6m/a,

mz'=0. 8/a +6m/a, m„=1.2/a +6m/a, (8)

(3a~) ""(m„+m„)= 8 MeV,

(3n, ) ""(m,+m, ) = 1OO Mev,
(lo)

m„=0.8/a+7m, mg= 1.1/a+5m.

Here m is, in Wilson's notation, (k, —k)/2k, '
with k = 1/M, and k, = 0.156 at p = 6. These re-
sults mere obtained with fifty different configura-
tions at several different values for the bare
quark mass, and the error in the masses is of
order 10%.

Using a '= 1120 MeV we get the following esti-
mates (in MeV) (we use as input m, = 140 MeV):

= 800+ 100, gyes ~
= 950 + 100,

m ~
= 1000+ 100, ~~ = 1300+ 100,

m„= 1200+ 100, f, = 95+ 10.

(9)

Ana, logous estimates can be obtained for strange
mesons and baryons. We could have alternatively
chosen to fit both the n and the p masses to ez-
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FIG. 2. Meson masses squared and baryon masses
as a function of k and the bare quark mass m = (&,
—k)/2&, obtained with use of the Wilson fermion action
(x = 1) atP = 6. I', V, S, and A stand for pseudoscalar
(J = 0 +), vector (1 ), scalar (0++), and axial vector
(1++) masses. N and 4 stand for nucleon (~+) and de1ta
(2+) masses.

which then gives 3, 5, and 100 MeV for the u, d,
and s invariant quark masses, in agreement with
previous phenomenological estimates. ' The re-
sults at z =0 and r = 1 seem therefore to be com-
patible, within statistical errors. However, the
y = 1 approach seems to be more promising for
the study of the spectrum of hadrons since the
separation of operators with different spins and
parities can be done on a single site. Using the
large number of configurations generated for the
fermions, we have also estimated the lowest glue-
ball mass by extracting the plaquette-plaquette
correlations from finite-size effects" at ii = 6,
with the result

m~ = (3.6+ 0.5)A = 1500+ 200 MeV.

We plan to improve further the accuracy of the
spectrum calculation by increasing the statistics.
Calculations of the spectrum on larger lattices
are in progress in order to check the smallness
of finite-size effects on the lattice. A compari-
son between the results on a 5'x 8 and a 6'& 10
lattice seems to show that these effects are small
when the pion mass is not too close to the high-
or low-energy cutoffs. A more detailed account
of the spectrum calculation will be published else-
where. We are also considering the possibility
of introducing the effects of closed fermion
loops. """ One w'ay of doing it mould be to use
chirally invariant fermions at x =0 with one com-
ponent per site for the fermionic loops and the
noninvariant formulation at y = 1 for the computa-
tion of the propagators.
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It is shown that in an SU(2) lattice gauge theory, in the approximation where internal
quark closed loops are neglected, chiral symmetry is broken. With use of partially con-
served axial-vector current f ~, the bare masses of the u and d quarks, and the p and 0
masses are estimated.
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Recently some progress has been made in nu-
merical simulations of theories with fermions. ' '
Although in a complete computation the effects of
fermionic closed loops must be taken into ac-
count, a reasonable estimate of the hadron spec-
trum can be obtained by eliminating all internal
quark loops (quenched case, see Ref. 2). In this
way the Zweig rule is enforced for all flavors. In
this note we present a study of chiral-symmetry
breaking and of the m, p, and 5 masses for the
SU(2) gauge theory in the quenched approximation.
A similar study for the SU(3) gauge theory, in-
cluding also baryons, can be found in Ref. 4. The
results obtained are rather satisfactory.

Let us begin discussing our strategy in the con- = Jd) [X]Tr[G(x, O[a)G*(x, O[a)]. (2)

tinuum case; later we will adapt it to the lattice
version of the model. We consider the fermionic
Euclidean action

S~= fd~xg(P+m)((,

where D „is the covariant derivative in presence
of a gauge field A „. If G(x, 0~4) is the fermionic
Green function with A& as background, and d @[A]
is the probability distribution of the field A (nor-
malized to 1), the following relations hold:

&g(O)g(O)&= Jd) [a] Tr[r(O, Olg)1,

& 0(x)),N(x) 0(O) r, g(0)&
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