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Gauge-Invariant Renormalization-Group Transformation without Gauge Fixing

Robert H. Swendsen
IBM Zurich Research Laboratory, S-8803 Ruschlikon ZH, SmitzerEand

(Received 14 September 1981)

A generally applicable gauge-invariant renormalization transformation is proposed for
the study of lattice gauge theories. Practical calculations can be carried out with use of
Monte Carlo computer simulations. The power and efficiency of this approach is dem-
onstrated by explicit calculations for the Z (2) lattice gauge theory in three dimensions.
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Recently, Monte Carlo (MC) computer simula-
tions' ' have been shown to be extremely useful
in supplying information on the behavior of lattice
gauge models, '' which are important in several
areas of physics. The study of phase transitions
(or their absence) is essential to the understand-
ing of quark confinement and asymptotic freedom
in non-Abelian gauge theories of hadron dynam-
ics.' ~' " There is also a very close relation-
ship with problems involving random interactions
in many-body theory, and the Hamiltonian (action)
of the Z(2) lattice gauge theory discussed below
is just the frustration operator introduced by
Toulouse as an essential tool in the study of spin-
glasses

Both conceptually and for the efficiency of
practical calculations, it is desirable to be able
to analyze MC simulations of these models with
the real-space renormalization-group (RG)
formalism. 5 With the recent development of
methods to determine the existence of phase
transitions and calculate their locations accurate-
ly by means of MC simulations on small lattic-
es,""' the MCHG approach provides substan-
tial improvement in the ability to extract informa-
tion from computer simulations.

The use of real-space HG has proven more dif-
ficult than for the corresponding spin systems
because of the high symmetry; most simple defi-
nitions of "block spins" fail to preserve the gauge
symmetry and can only be used with some form
of gauge fixing. However, for MC simulations of
lattice gauge theories, gauge fixing is undesirable.
It produces prohibitively long relaxation times
when built into the MC simulation and it is a time-
consuming procedure when employed in the defini-
tion of the renormalized operators. "

In this paper, I would like to propose a simple,
generally applicable renormalization transforma-
tion for analyzing lattice gauge theories. The
transformation avoids gauge fixing, either global-
ly or within specified blocks, "and is directly
applicable to arbitrary lattice gauge theories.

The renormalized Hamiltonians (actions) retain
the full gauge symmetry of the original model.

To demonstrate the practicality of this ap-
proach, I have performed explicit calculations
on the nontrivial problem of the Z(2) lattice gauge
theory in three dimensions. This model was
originally shown by Wegner' to be the dual of the
three-dimensional Ising model. It is especially
suitable for testing a new approach because it
has a phase transition and the critical coupling
constant and critical exponents are known to suffi-
cient accuracy.

Consider a general Hamiltonian of the form

e=SCQ Tr(U, , U,,U„U„.),
P

where the sum is over elementary plaquettes, p',
and the U;,.

' s are operators associated with the
links between lattice sites. These operators are
elements of a group G and are defined such that

U;, = (U;;) '. [For the example of the Z(2) lattice
gauge theory, G contains only the scalars +1 and
-l.]

These Hamiltonians are invariant under an
arbitrary gauge transformation of the form

(2)

where the G s are members of G defined at each
site. It is this symmetry that causes difficulties
when an attempt is made to define "block spins"
in analogy with the procedures that have proven
effective in spin systems.

The renormalization-group transformation I am
proposing is illustrated for simplicity on a two-
dimensional lattice in Fig. 1. The lines represent
the gauge variables, U... and the intersections
are the sites of the original lattice. For a trans-
formation with scale factor P =2, only the circled
sites remain in the new renormalized lattice.
The renormalized gauge fields connecting two
sites of the renormalized lattice are constructed
from the operator products along the paths marked
Q, &, and C as shown in Fig. 1. The products of
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PIG. 1. Diagram of the proposed renormalization
transformation for lattice gauge theories with b = 2
using d = 2 as an example. Operator products are
formed along each of the paths marked A, 6, and C.
In d dimensions, there are 2d +1 such paths for each
pair of neighboring sites on the renormalized lattice.

the gauge fields over each of these paths contrib-
ute equally and the renormalized operator is de-
termined by majority rule [as in the calculation
described below for the Z(2) model], or some
convenient definition of a similar nature. The
rule should be chosen to have the symmetry of
the model, so that multiplying each of the opera-
tor products by the same element of Q is equiva-
lent to multiplying the renormalized operator by
that element.

This transformation satisfies all symmetry
requirements. Gauge transformations on sites
retained by the RG transformation produce corre-
sponding gauge transformations of the renormal-
ized Hamiltonian. The renormalized operators
are invariant under gauge transformations associ-
ated wkh any other site.

Table I gives the technical data for the MC

TABLE I. MC simulation data for MCRG calcula-
tions for the Z (2) lattice gauge model. Data taken for
correlation functions every 5 MC steps/site.

TABLE II. Z(2) lattice gauge theory. Estimates of
the deviation of the coupling constant used in the MC
simulation iK~ = 0.76113 from series expansions and
duality (Itef. 26)] from the true value of K, . The num-
bers in parentheses are estimates of the statistical
error in the last digit. N„ is the number of RG iter-
ations; N, , the number of coupling constants in the
RG analysis.

Nc

Lattice sizes being compared
32—16 16-8 8—4

simulations of the three-dimensional Z(2) lattice
gauge theory. They were performed at the value

&, = 0.761336, obtained from the series estimate
for the critical coupling in the three-dimensional
Ising model, "using Wegner's duality relation. '
Table D shows the deviation of this coupling from
the critical coupling calculated with use of com-
parisons of MC simulations on pairs of lattices
following Wilson's technique as applied by Landau
and Swendsen ' ' for locating tricritical points.
As the sizes of the lattices increase, more RG
transformations are possible, reducing the size
effect and the effect of irrelevant operators.
However, because of critical slowing down, re-
laxation times increase, giving larger statistical
errors. Both effects can be seen in the data in
Table II. It is clearly quite simple to determine
the existence of the phase transition and confirm
the value of the critical coupling to an accuracy
of better than 1% ven restricting consideration
to the data from 4X4&4 and 8&&8&&8 lattices.

The eigenvalues A. =5" of the linearized RG
trans formation

(n+t) /g+ (n)
n8 o'. 8

calculated at the fixed-point Hamiltonian H* give
the critical eigenvalue exponents. "' * ' As with
.other MCRG calculations, the matrix 7„z is found
numerically by solving a set f.f linear equations
with coefficients obtained from correlation func-
tions calculated from MC simulations.

The magnetic eigenvalue exponent, y„, was
found to be negative as expected. Table III shows
the MCRG estimates for the critical eigenvalue
exponent yr =1/v. The size effect is clearly

Lattice size (L)

32
16

8
4

38 800
105 000
580 000

1 040 000

15000
40 000
80 000
60 000

Length of MC Steps discarded to
simulation reach equilibrium O. OO13 (4)

0.0012 (8)
o.oo13(7)
0.0013(8)
0.0009 (6)
0.0009 (6)

0.0018(3)
O. OO15(5)
o.oo2o(4)
O. OO2O(6)

o.OO1(1)
0.00&(1)

0.0022 (2)
0.0018(4)
O. OO35(5)
O. 0031(5)
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TABLE III. Estimates of the critical eigenvalue ex-
ponent yz. [aotua1 va1ue is about 1.57 to 1.60 {Hefs. 26
and 27)] for the d = 3, Z(2) lattice gauge theory as a
function of the number of RG iterations {N„), the num-
ber of coupling constants in the RG analysis (N, ), and
the linear dimension of the lattice (L).

N„ Nc
Lattice size {L)
16 8

1.37(2)
1 37(3)
1.36(3)
1.4V{3)
1.47{3)
1.45(3)
i.49(5)
1.48(5)
1.41(V)

1.35{1)
1.35(1)
1.33(1)
1.40{2)
1.40 (2)
1.34(3)
1.3(1)
1.1(1)
O.V(3)

1.32(1)
1.32(1)
1.27(1)
1.30(1)
1.1.2{2)
o.vo(3)

1.29(3)
1.1O(9}
o.8(1)

visible, but the values for the 32' 32&& 32 lattice
suggest convergence towards the expected value
for y~. The accuracy is not as good as the cor-
responding MCBG calculation in the Ising spin
representation, but it is still within 10'%%uo of the
expected value at the second iteration. This pro-
vides a clear distinction between this second-
order transition and a first-order transition that
would have y~ =d =3. ' Specially optimized pro-
grams should be able to improve the accuracy
considerably. ' It should be mentioned that these
estimates for the critical exponent are "biased, "
so that averages over many short runs can depend
on the length of the individual runs. This depen-
dence vanishes in the limit of long runs and is
usually a very small effect in MCRG calculations.
For the present calculation, the effect was signi-
ficant for the 32&32&&32 lattice due to the long
correlation times, even for individual runs as
long as 6000 MC steps/site. The effect was not
a problem with the smaller lattices. Since the
correlation functions that are compared for the
determination of the critical coupling are un-
biased, the effect was not a serious problem there
either.

In addition to testing this approach by direct
application to problems of interest (especially
for d =4), it should be possible to investigate the
properties of the transformation in the "weak-
coupling" (large-K) limit in perturbation theory. "

The BG transformation I have proposed can be
extended to include Higgs variables associated

with the sites of the lattice and interacting with
the gauge fields, by performing a gauge trans-
formation on each site to rotate the Higgs field
into the identity operator. The full effect of the
Higgs fields is moved to the gauge operators,
which can then be renormalized as described
above.
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