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Solvable Fractal Family, and Its Possible Relation to the Backbone at Percolation
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A nontrivial family of d-dimensional scale-invariant fractal lattices is described, on
which statistical mechanics and conductivity problems are exactly solvable for every d.
These fractals are finitely ramified but not quasi one dimensional, and hence can be
used to model the important geometrical features of the percolating cluster's backbone.
Critical exponents calculated for this model agree with those of ' real" systems at low
dimensionalities.

PACS numbers: 05.40.+j

Few nontrivial models in statistical mechanics
are exactly solvable. This Letter shows that a
new collection of self-similar models, made up
of the Sierpinski gasket' and of its generaliza-
tions to all Euclidean dimensionalities (d), should
be added to this short list. This is the first time
that a family of nontrivial fractals" is studied
both systematically and exactly for every d, and
the corresponding transport properties are cal-
culated exactly. In addition to providing a testing
ground for approximations, these fractal models
may yield insight on the geometric structure of
the percolation backbone.

Much of the current interest in the properties
of dilute systems concentrates on the vicinity of
the percolation threshold, p, ." Monte Carlo
(MC) simulations, ' as well as recent experiments
on granular superconductors, ' indicate that for
length scales below $ (the percolation correla-
tion length), and well above the microscopic
lattice distance a, the clusters are self-similar
fractals, as first proposed in Ref. 1. The same
is true of the cluster backbones, obtained by
erasing the dangling bonds. The backbone is
responsible for the time-independent transport
properties (e.g. , of resistor networks) and for
correlation functions (e.g. , of magnetic moments)
near the percolation threshold. The critical ef-
fects near percolation arise from length scales
up to (. Bulk properties are obtained by juxta-
position of pieces of size $.

An important characteristic of a fractal is its
order of ramification. ' When a structure has a
range of self-similarity between a microscopic
length a and a finite scale (, the order of ramifi-
cation at the point P is" the smallest number
of interactions one must cut to isolate an (other-

wise arbitrary) bounded subset that surrounds P
and falls in the scaling range. When the smallest
value of R over the structure, A, satisfies
A - =2, the structure is q'uasi one dimensional.
When the largest value of R over the structure,
R „, satisfies R „& ~, the structure is finitely
ramified. MC simulations' and experimental re-
sults' suggest' that the backbone at p, is finitely
ramified' but not quasi one dimensional. '

The present Letter investigates certain non-
random fractal lattices that we believe are the
simplest compatible with the above properties.
Specifically, (a) R~ = d+ I, which we take to be
the lowest value for fully d-dimensional struc-
tures, and (b) R ~„=2R ~ —2 = 2d, which is the
lowest value compatible with the above A~. ' In
fact, these are the only fractals we know to
satisfy (a) and (b).

Thanks to its simplicity, we can test this
family as a possible model for the backbone of
the infinite cluster near the percolation thresh-
old, up to the scale of (. It yields values for the
exponents P' [ describing the probability of be-
longing to the backbone, written as B(p) -(p
—P, ) -

g '] and t [ the conductivity exponent
defined through o(p) -(p -p, )'- $

't" = $ «].
These values agree with the MC results for the
backbone at low d. As d increases, the MC re-
sults and the values of our model deviate from
each other. Our model is designed to be made
solely of interconnected loops, while actual back-
bones also include quasi one-dimensional links. '"
This structure, and the inclusion of randomness,
may be necessary for a more detailed study of
the backbone, especially at high dimensionalities.
However, our results suggest that at low dimen-
sionalities loops alone yield a reliable descrip-
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tion of the backbone.
Observe that our model is the logical opposite

of the simple "nodes and links" picture, ""in
which quasi one-dimensional links of length L

-(p -p, ) connect nodes of distance $ apart.
This simple model fails badly for low d, "where
three different values of g are needed to explain
all the observed properties. ' Recently, Conig-
lio' replaced the links by more complicated
structures, and related each value of ( to a dif-
ferent geometrical feature of these structures.
However, even these sophisticated "node and
link" pictures are characterized by R = 2, while
we aim at structures with A~ &2.'

As illustrated for d=2 in Fig. 1, our geometri-
cal construction starts with a d-dimensional
hypertetrahedron. The midpoints of the edges
are connected, creating 0+1 small hypertetra-
hedra. The volume at the center (bounded by
faces of these new tetrahedra) is then erased,
and the procedure is applied to the resulting d+1
new tetrahedra. This procedure is repeated
down to the microscopic length scale, a. Each
step changes the length scale by a factor 2, and

creates d + 1 new units. Ther efore, ' the fractal
dimensionality' is given by D =ln(d+1)/ln2.

Note that the order of ramification is sensitive
to the detail of the construction. Here it is finite,
equal to either 4+1 or 2d, but if the fraction of
eliminated volume is slightly decreased (in-
creased), R becomes zero (infinite).

Models with finite R, can be solved exactly.
We consider the conductivity of a dilute resistor
network, a(p), the probability of a bond's belong-
ing to the backbone, B(p), and the crossover of
dilute magnetic spin models from percolative be-
havior at zero temperature to thermal behavior
at finite T, which occurs at ~ ~(p -p,), with
7 k z T/J for Heisenberg-like (n ~ 2) systems and
T exp(-2cl/kBT) for Ising-like systems (eI and T
are the exchange and the temperature). The num-
ber of backbone bonds in a volume (' is B(p) $~.
Writing it as $, we find that the fractal dimen-
sionality' is D=d —P'/v.

FIG. 1. The Sierpinski gasket's initial triangle, and
the first construction stages. The limit shape's frac-
tal dimensionality is D = In3/1n2 =—1.585.

To evaluate the conductivity exponent t, the
resistance of each bond before and after an iter-
ation of our length rescaling transformation is
denoted by p(a) and by p(ba). Here we shall use
b=2. When a current I is sent into one corner
of the tetrahedron, a current I/d flows out of
each of the other d corners. With use of the sym-
metry of the problem, the voltages at the corners
are easily calculated. The voltages at the cor-
ners remain unchanged after iteration, provided
that p(ba) = I(d+3)/(@+1)J p(a). Rewriting this as
p(ba) =b p(a) yields, for b =2, f=ln((d+3)/(d
+1)J/ln2. Iterate l times, until b'=L/a and p(L)- L . The conductivity of an equivalent homoge-
neous medium" is thus a(L) -L' "p(L) '. Thus
for length scales L below $, the conductivity be-
haves like a(L)-I. ', with t=d —2+&. For scales
L above $ the conductivity ceases to change, and
a~ $ ". These relations (unlike the specific
value of f) are thus quite general, i.e. , indepen-
dent of tke particular geometrical model used
It would be nice to have numerical (or experimen-
tal) confirmation of the length scale dependence
of a(L) for I.& $.

In a dilute Heisenberg-like spin model, with
excha. nge couplings 2 or zero (with probabilities
p or 1-p), the recursion relation for sufficiently
small T is exactly the same for (J/k BT) as for
1/p. " This yields the general result @H = vf
Available values of gH/v are quoted below. [The
recursion relation for exp(-2J/k BT) in the Ising
case is different, and its linear term is mainly
connected to one-dimensional links. " This ex-
plains why 1 = j ~

& Q H. ]"
Discussion of Table I.—The values quoted for

the backbone at d =6 are exact for percolation on
a Cayley tree (d = ~). For percolation on the full
cluster, the upper critical dimensionality is d
=6,"at which v = —,

' exactly. It has been conjec-
tured" that the Cayley-tree value t =3 is also cor-
rect at d =6. We performed new MC simulations,
and these confirm explicitly, for the first time,
that the Cayley-tree result P'= 2 applies at d = 6.
We took samples with lattice sizes of I.=6, 8, 10,
and 12, and used finite-size scaling to obtain p,
=0.109 and P'/v=3. 88+,',"4. The addition of
logarithmic corrections increases this value
slightly towards 4, yielding P' = 2 and the random-
walk dimensionality D=2. The same D is found
in the simple "nodes and links" model, where D
= P/v =1/v=2. " The other values of P' in Table
I come from earlier MC calculations. '" The
values for v are estimates quoted in Refs. 5.
The available series values" for I, seem con-
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TABLE I. Comparison between backbones and our models.

Backbone cluster Our models

d
1'
2

P'
0

0.5-0.6

0.8-1.0

1.0-1.2

v

1
1.33-1.35

0.8-0.9

~ 0 7

1/2

t
0

1.43
0.9 —1.4

1.5'
1.33

1.6 —1.7
1.95
1.8'

2 037
3

D = d-P'/v
1
l.5-1.6

1.8-2.0

2.3-2.5

t =t/v
0
0.82
1.06

0.67—1.05
1.1
1.0

~ ] 9
2.3
2.1
3.1
3.4
6

1 0
1.585 0.73

2.000 l.58

2.322 2.48

2.807 4.36

Exact values.
MC Refs. 6 and 22.
Series, Ref. 21.
From conductivity measurements, Refs. 23 —26.
From Heisenberg crossover measurement, Ref. 26, with use of yH = &v.

Ref. 27.

sistently higher than the MC values. " Experi-
mental results are widely scattered, and seem
to depend on details of the systems under study.
These analyses did not include corrections to
scaling, ' and may also suffer from finite size
and other difficulties. The discrepancies between
the results of Heisenberg crossover and conduc-
tivity measurements, and between series and
Monte Carlo data, will have to be resolved by
better analyses.

The fractal dimensionalities and the orders of
ramification of our models agree with those of
the backbones for all d -4. For d» 3 our values
for t agree surprisingly well with those given by
MC and some of the experiments. The remaining
disagreements between our values and those from
the series (and other experiments), indicate (in
our mind) that self-similar loops are the pre-
dominant feature of the backbone for d ~ 3, where-
as nodes and quasi one-dimensional links must
be added for higher d.
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