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sult of a better distribution of the pressure across
the end surfaces of the sample. A higher com-
ponent of p along [010] for curve 2 explains the
increased dT, /dp coefficient, since dT,/dp is
higher for p along [110]. Curve 1 was measured
first, starting at p=0. Then the points above p
=0.35 kbar on curve 2 were taken. Then, having
kept the sample at room temperature at p =0 for
several days, we measured the points below p
=0.3 kbar on curve 2. For the sake of clarity,
the quantities A, T, - T,, and AT,, correspond-
ing to points on curve 2 above p =0.20 kbar, were
adjusted to correct for a shift caused by the im-
perfect pressure distribution.®

We see that both A and 7', — T, fall off in the
second-order region of Fig. 3 and just below the
TCP’s in Fig. 4, which supports our conclusions
that the system has different properties here.
This change of Landau parameters, we believe,
is connected to an increased influence from criti-
cal fluctuations, which must be expected to be
larger in a second-order region and close to a
TCP. Also, the fact that dT, /dp is higher for p
along [110] than for p along [100] indicates in-
fluence of fluctuations. According to Landau
theory, it should be the same in these two cases.!®
Note that T, - T,=0 at a Landau tricritical point.
Our measurements, which give 7, -~ T,>0 even
close to the TCP’s, confirm that the change of
order of the transition is caused by critical fluc-
tuations and is not a result of pressure-dependent
Landau parameters. Landau theory explains the
specific-heat curve shape outside the tempera-
ture range of 0.5 K around 7,. Close to T,, crit-
ical fluctuations are important for the C, curves,

and they determine the order of the phase transi-
tion and influence the shape of the phase diagrams
and the values of the Landau parameters.

In conclusion, our measurements of 7,(p) have
led us to believe that KMnF, for p along [110]
has a TCP near p=0.45 kbar, 7=109.4 K, and
two new consecutive TCP’s joined by a second-
order line near p =0.25 kbar and 7=188.0 K for
p along [100]. The specific-heat curves fit Lan-
dau theory with parameters showing a change with
pressure which is correlated with the change of
the order of the transitions. More details will be
published elsewhere.®
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A droplet theory of Ising systems is constructed, valid near space dimensiond =1,
and based on a model incorporating only the configurational energy of surface tension.
The droplet distribution function is calculated explicitly, with use of renormalization-
group methods to control the droplet-shape fluctuation effects essential to its scaling
form. Universal quantities are calculated; those (e.g., 8) which reflect the droplet con-
centration have an essential singularity in e=d —1.

PACS numbers: 64.60.Fr, 05.50.+q

Droplet models have been studied for many
years with a view to obtaining a theoretical de-
scription of a two-phase (Ising-like) thermody-
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namic system.! Two problems have attracted
particular attention. On the one hand, the exis-
tence of large droplets of one phase embedded
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in a background of the other phase has been rec-
ognized as the source of an essential singular-
ity on the coexistence curve.? In this case the
relevant droplets have scale size R large com-
pared with the correlation length £; the theory
is tractable since these droplets are geometri-
cally well defined (£ measures the intrinsic
thickness of the droplet boundary) and surface
tension is manifestly controlling the droplet dis-
tribution. On the other hand, droplet models
have formed the basis of numerous theories of
behavior near the critical point.® In this case
it is recognized that droplets with R small com-
pared with & (though still large compared with
the lattice spacing L,) also play an essential role.
To date no computational framework has existed
for this range of droplet sizes; accordingly,
droplet theories of critical-point behavior have
been largely phenomenological.®

In this paper we present a theory which provides
a unified description of droplets of all scale
sizes. The theory is based on the statistical ,

mechanics of droplet configurations controlled
entirely by surface tension for the zero field
case which we consider in this paper, the descrip-
tion of the regime R < £ is achieved with use of
renormalization-group (RG) methods, which are
analytically controllable for sufficiently low
space dimensionality d, technically for d=1 +e€,
Universal quantities, such as droplet density,
critical exponents, correlation functions, and the
probability density function (pdf) for block co-
ordinates, are calculated explicitly for small e,
those quantities (e.g., the order parameter ex-
ponent 8) which reflect the droplet density are
found to have no perturbative expansion in €. In
the € =0 limit our results recapture the essen-
tial predictions of kink-based studies of one di-
mension.* Like these, our own study illuminates
the universal configurational physics underlying
critical-point behavior.

Our first task is to study the statistical mech-
anics of the effective Hamiltonian for a single
(“spin-down”) droplet embedded in an otherwise
homogeneously ordered (“spin-up”) phase:

=T," [aQ R+ 1+4R NPT, (L, )]V, (1)
The integral is the surface area of a droplet of scale size R which deviates from spherical by an

amount f(7), depending on the direction 1; L;;=x; 8/8;~x; 3/3; are the angular momentum deriva-
tives. This is the generic surface-tension Hamiltonian which emerges® from a general Landau-Ginz-
burg model in the “thin-wall limit” when the mass parameter of the model is taken to infinity. Our
standard tool for calculating the trace over f(n) is perturbation expansion of ¥ in f, which has a na-
tural decomposition in spherical harmonics. Both the /=0 and /=1 components must be handled by
collective-coordinate methods. The collective coordinate for the /=1 modes is the coordinate of the
center of the droplet, and gives a factor extensive in the volume available to the droplet. The [=0
collective coordinate can be taken as the scale size R of the droplet. The modes with 22 (correspond-
ing to droplets of a given position and scale size but varying shape) can be handled perturbatively. The
resulting single-droplet partition function may be utilized to yield the mean fraction of available space
occupied by all droplets of scale size R ~R +dR, in the dilute limit (realized, we shall see, for small
€):

WR) dR =A(T0R'€)’(2+€)/2exp[<§-"—R—€ +——2——>]d—R [1+0(e, T,R™€)] (2)
T, €T(d)/lR v oo ’

where A=54%)/2q (a+)/2(97)=(a*1) /229 /51 1 1+ O(€)]. Here S, is the surface area of the unit sphere

and €e=d -1.

For lavge R the R dependence of this result agrees with coexistence-curve calculations, even the
prefactor structure being consistent with series expansions for the two-dimensional Ising model.® The
failure of the perturbation theory for small R, signaled also by the €' in the exponential, may be
circumvented, as in the case of the planar interface,” by introducing an appropriate renormalized di-
mensionless temperature T(R) = T,R™€[1+O0(T,R™ )] obeying the RG equation

R\ _11=T(R)/T |
<£ ) B T(R) L1+01(R) ], (3)

where v™ =€+ ;€% +0(€) and T =€ +0(€®). The RG-invariant length £ locates a crossover between
large-R [ T(R) ~(R/£)™¢] and small-R [T (R) -~ T.] behavior, and exhibits the critical behavior ¢«|T,
- T(L,)]™% as the fundamental length scale of our theory it is identified as a measure of the true corre-
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lation length. When reexpressed in terms of T(R) Eq. (2) becomes

S, S,€v

2

¢(R)dR=A(T(R))_(2+€)/2R'13Xp[- <T(R)— T

T (@)

)] dR| 1+, T(R))] . (4)

In conjunction with (3), this is our first key result. It is universal, being independent of the renor-
malization scheme; we have also derived it directly from limiting cases of a class of Landau-Ginzburg

models.
droplet shape.®
distribution of kink-antikink pairs.

and C=0.577... is Euler’s constant.

In utilizing Eq. (4) to characterize actual multi-
droplet configurations one must build in two es-
sential refinements. Firstly, even in a noninter-
acting droplet picture, one must account for
excluded-volume effects: A spin-down droplet
cannot meaningfully be embedded in a region oc-
cupied by a larger spin-down droplet. Secondly,
it is clear that, any spin-down droplet will in
general contain smaller spin-up droplets, which
may themselves contain still more-deeply nested
droplets.® Configurations consistent with these
requirements, and with Eq. (4), may be construct-
ed by decorating a hyperspherical volume S,d-'L*
of homogeneously ordered spin-up phase with
spin-down and spin-up droplets of successively
smaller scale sizes ranging from L down to L,,.
At each stage of the decoration procedure the
down- (up-) spin droplets utilized are such as to
cover the requisite fraction (4) of the volume oc-
cupied, at that stage, by up- (down-) spin phase.
It is easily established that, with this prescrip-
tion, the fraction of space occupied by the outer-
most of the hierarchy of spin-down droplets (i.e.,
droplets which are not themselves nested with-
in larger spin-down droplets) is ¥,(L, Ly) =1
-exp[-/f zp(R) dR], while the total fraction of
space occupled by spin-down phase is ¥(L, L,)

=3{1 —exp| 2[" WR)dR]}. The mean number
N_(R) dR of spm-down droplets with scale size

R —~R +dR, and the actual volume of spin-down
phase of which each consists, M_(R), then follow
as

N_(R)=[1~-¥(L,R)]L*R™*y(R),
M_(R)=|1-¥(R, L,)]S,d"'R".

(6a)
(6b)

These key results have three immediate conse-
quences. Firstly, the critical (&> L,) droplet
“density” p, =(L,/L)" flf‘oN_(R) dR = y,/2d, reveal-
ing the physical significance of the parameter ¥,
whose smallness makes legitimate the dilute ap-
proximation implicit in the neglect of partial

Its scaling form ¢ (R) =R~ (R/¢) originates in the renormalization effects of fluctuations in
For €—0, (3) and (4) correctly reproduce the results appropriate to a one-dimensional
For R -0 we find ¢(R) =y,R™*, where

Yo =21t~ 2expl [1+2C +(2/€)]} [1+0(€)]

(5)

droplet overlap.'® Secondly, the magnetization

m=1-2(L*S,/d)" f:)N_(R)M_(R) dR
=1-2¥%(L, L,)

has the critical behavior

3
m~exp(=J, 2¢R™ dR) ~(£/L) ™%,

permitting the identification 8=2y,v, and reveal-
ing that B does not have a perturbative expansion
in €. Setting €=1 in the small-€ expansion of ¥,
[Eq. (5)] gives y,=0.01, in poor accord with the
exact d=2 result B/2v=0,0625; the discrepancy
is scarely surprising in view of the extreme sen-
sitivity of the result to the manner in which Eq.
(4) is extrapolated to d=2. Thirdly, the second
moment of the droplet distribution [} L ' N -(R)
XM_%R) dR diverges with a “cluster size expo-
nent” 6=(d —2y,)v=dv - B. This conclusion is
consistent with series-expansion studies'! in
d=2 and bears out a conjecture based on a phe-
nomenological droplet theory.'? We remark,
however, that the general scaling form for the
droplet distribution,'® which forms the core of
the phenomenological theory, is not borne out by
the explicit scaling form (6a); the discrepancy
can be traced to a sum rule satisfied by (6a) but
not anticipated in the phenomenological theory.
The arguments developed above can be extended
to account for coordinate fluctuations by allowing
for a Poisson distribution of the number of each
hierarchy of dressing droplets. The pair correla-
tion function at criticality and the order param-
eter susceptibility have been calculated, and the
associated exponents d —2 +n=4y,=28/v and y
=(d - 4y,)v=(2 - n)v are consistent with two-
exponent scaling theory. We have also calculated
the probability density function for block (“coarse-
grained”) coordinates, characterizing the instan-
taneous spatial average of the ordering coordinate
within a region of radius L, The predicted®
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FIG. 1. Droplet-based calculation of the block-co-
ordinate pdf at criticality, withd = 2 and §,= ‘11?; .

universality of this pdf, in the range &> L > L,
is borne out by the result which depends solely
upon B/v =2y, and d. Setting d=2 and y,=B/2v

= 4 gives the form shown in Fig. 1. The exis-
tence of two distinct markedly asymmetric peaks
is in accord with calculations of similar pdf’s,
based on the approximate recursion formula®
and Monte Carlo simulations'®'® in d=2. The
width of the peaks (relative to the standard de-
viation of the pdf) is proportional to ¥,“2, and
vanishes as € -0, when the pdf assumes the
double-0d-function form appropriate'® in d=1.
This observation reemphasizes the connection
(already apparent in the identification 3/v =2y,)
between the smallness of 3/v and the high degree
of short-range order at length scales small com-
pared to £, characteristic of low-d systems.

In assessing the potential for further develop-
ments, we foresee no problems of principle in
extending, to higher order in ¢, the calculation
of the fundamental parameter i, the incorpora-
tion of the O(y,) corrections necessary to refine
our procedure for constructing multidroplet con-
figurations seems considerably more problematic.
One may also question the relevance of the entire
droplet picture to three-dimensional systems,
where additional prefactors appear in the calcula-
tion of (2), and connectivity properties can lead
to ambiguities in identifying localized droplets.™
It seems clear, nevertheless, that this explicit
and analytically tractable realization of droplet
phenomenology does much to illuminate the con-
figurational physics controlling exponent values:
It appears that, in low enough dimension, the
fractal dimension of the droplet surface'® con-
trols v while the critical droplet concentration
controls B,
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