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inversion against the 2s ground state, and two-
photon gain at ur, shows up. This gain increases
with the probe light intensity, since for degen-
erate two-photon emission

dI, /dz =&, &N I,'
holds, where hN is the inversion density, and

Bg,' is the two-photon transition rate per atom.
At the maximum achievable peak power of the
injection pulse, P30= 3 kW, the gain in the active
zone approximately 2 cm long is dI, /I, = 20'%%uo.

The full lines represent fits based on the two-
photon analog of the Lambert-Beer law,

I( )/I(O) = [i+I(O)/il-', (2)

where I ' =AN az, and o is the emission cross
section. However, saturation has been included
in the calculation of curves 2 and 3. In contrast,
curve 1 is a direct fit of Etl. (2), since saturation
is overcome by powerful 3d-2P superfluorescence
following two-photon absorption. This super-
fluorescence is efficiently quenched upon P,
pumping which generates appreciable 2p popula-
tion.

The bottom portion of Fig. 3 gives the depend-
ence of the probe gain on the power of the second
pump step, P,. It displays the continuous transi-
tion from two-photon absorption to transparency
to gain.

In brief, we have demonstrated nondegenerate
two-photon light generation and degenerate two-
photon amplification in Li vapor. After the

(single-photon) laser and maser, the parametric
oscillator, and the Raman sources, the two-
photon laser is the fourth principally different
quantum-optical device. If electric excitation
becomes feasible, this novel type of laser will
turn out to be particularly useful as a tunable
source and as a high-power optical amplifier.
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Theoretical results are reported for energy propagation in bounded spatially dispersive
(exciton-polariton) media. A remarkable slowing down of the energy-transport velocity
Vz is predicted near resonance. For GaAs the decrement is by a factor of 10, with VE

4X10 m/sec at resonance. Some comparison is made between energy-transport,
group, and signal velocities, and available data.

PACS numbers: 42.10.-s, 78.20.-e

In this Letter we report new theoretical results
for the dispersion of the velocity of energy trans-
port, V~, in a nonlocal or spatially dispersive
exciton-polariton medium. Loudon' studied en-
ergy propagation in an absorbing local dielectric;
Bishop and Maradudin' extended the analysis to
include spatial dispersion, and we follow the

latter authors. We find a decrement by a factor
of 10' in V~ at resonance.

We consider a simplified, idealized situation.
The surface of a semi-infinite isotropic spatially
dispersive medium lies in the x-y plane, with
the medium occupying the half-space z ~ 0. A

steady-state monochromatic plane electromag-
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netic wave is incident normally upon the medium
giving rise to two transverse polarized, exciton-
polariton plane waves propagating in the medium.
These two plane waves are coupled to form the
physical polariton, whose velocity of propagation
is desired. At the outset, note that each of the
constituent plane waves is a coupled photon-exci-
ton and exhibits its own branch dispersion u(k, ).
This suggests that the group velocity, Vc, = Ru/

Bk, , of each plane wave may be relevant. But
in the resonance frequency regime the wave num-
ber 0, is a complex quantity for each wave, rais-
ing doubt as to the meaning of VG, defined as a
derivative with respect to real part of k, , V~,
=d&u/dk, ~, and in addition the strong coupling be-
tween waves raises additional doubt about the
significance of VG, The signal velocity V~ in
spatially dispersive media was introduced and
analyzed by Birman and Frankel' in order to
provide an alternative velocity of propagation,
but V~ refers to the first arrival of a substantial
laser amplitude, following the decay of precur-
sors, when a square pulse is incident. The ve-
locity of energy transport, V~, offers another
theoretical alternative. We remark that the
proofs4 that energy-transport and group veloci-
ties are identical do not apply in the present
case since our system is nonlocal, nonhomogen-
eous (because of the presence of a boundary) and
nonconservative as well as having coupled waves.
Additional interest in this question arises be-
cause of recent experimental reports on slowing
down of a wave packet near a resonance. We re-
turn to these experiments at the end of this Let-
ter.

Following Ref. 2, we assume a model dielec-
tric function in the medium, of the form (dielec-
tric approximation)

4m~
e((u, k) =e„+ (1)

coo —N —zy +Dk

where ~„is the background dielectric constant,

~0 is the resonant frequency, y is the damping
constant, D is R&u, /m*, m* is the exciton mass,
and 4vn, is the oscillator strength. The physical
polariton can be represented as

E = Q E, exp(ik, z),

V ~ (S +S„)+ —(U +U )
dt

y ~, D ~—~2 ——~(z) ~ —.
Bz

Here

Sz=(c/4m)(E xH)

S =-(D/V. )gx, g(z) t. s~/e,

Uz = (1/8~)(e „E'+H')

(4b)

(4c)

U = V, '[j'+e '$2+D(V$)2]. (4d)

V, is the volume of the unit cell. Using relation
(2) and taking the time average one obtains

where k,. is a solution of (k,. /k, )'=e(k, , &u), k,
-=&a/c, and the E, are determined from relevant
boundary conditions. ' Notice that j=1 and j=2
correspond to upper polariton (UP) and lower
polar iton (LP), respectively.

The energy flux vector S in a spatially disper-
sive medium has been shown by Maddox and
Mills, ' and Bishop and Maradudin, ' to be the
sum of an electromagnetic Poynting vector S~
=(c/4w)E xH and a "mechanical" (in our case
excitonic) Poynting vector S» both of which con-
tribute to the energy transport. We now follow
Ref. 2 but reinterpret their basic variables $ as
[(m*) '/er*]p where p is the exciton dipole mo-
ment and e ~* the transverse effective charge.
The Poynting flux satisfies the equation

2 2

(S ) = (c/8w) Re[ ( p E,e '"& ') ( Q E, *n, *e '"' *')],

g 2 — 2 g e&j z ' 2 P gQ ge 5k' 8

2 4. ', (a, — *), , (a, "- ") )
2 2 2

(Uz)= Re[a„( Q eE'"~')( QE,*e '"z ')+( P n, E,e'"i')( Q .pz, +E,+e "~. ')]. ,
9 =1 1 g =1 J =1

(8)
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where n, =k,/k, are refractive indices, k, and k,
are wave vectors of propagating modes, Q~ is a
plasma. frequency, Q~'=4)7e, *'/e„m*V„and I"
= [ -((u,' —a)' —i(dy) /D]'i'.

The energy velocity of the physical polariton is
Vs= (S~+S„)/(U~+ U~), the ratio of magnitude of
the flux vector to energy density. In order to
proceed, we calculated the magnitudes of the
various contributions to V~ using realistic values
of the parameters appropriate to the semicon-
ductor GaAs, namely S~, =1.515 eV, 4m', =0.0013,
m*=0.6 m„m, =0.5 MeV, e =12.55, y=0. 1

cm ', Q~'/&u, ' =10 ', and crystal thickness is 3.7
pm. In the resonance regime of interest ((2; -&u,)
we find (Sz) —10 'c and (S„)-10 c, or (S„)
«(S~). It is thus justified to proceed by separat-
ing the contribution of upper polariton (UP) branch
and lower polariton (LP) branch from (Ss) and

(S~) in Eqs. (5) and (6). Adding these contribu-
tions separately we obtain (S„p) and (S).p). Like-
wise (UUp) and (U„p) are obtained from Eqs. (7)
and (8). The contribution of the cross term is
thus neglected and we obtain contribution from
upper and lower polariton to the Poynting flux,
energy density, and energy velocity as

C
(Spp) 8p RP R R' ~' P2D 4p

Re (8'
'

r')(8 "-rp*))'
1 1

( U ) R [ (E E p)pe 2))rte 2))2R) +E E p)pn n p)pe 2~2Re 2)22 g ]
1

7T

p ~ (p ppp pD ri Rp
(2 p)(8 ))

V@ (Up)
= (SUp)/(UUp)

(8„)=—Re(RZ, Ppp, 'p' 'p ' ')P ' RP ', ' ',), ,)),
2 2

(U~p)= Re[a„(E,E,*e' 2'e '2 ') +E,E,*n, n, *e'&'e '+ ']1

(10)

(12)

V~ (Lp) = (SLp)/(ULp),

+ ((8) +(2) +D! I!)Re
( 2 R)(k R Ip )2 2

(13)

(14)

where V~ (»& and V~ („P~ are upper and lower
polariton contributions to the energy velocity.

With use of Eqs. (9)-(14) and the GaAs param-
eters as given above, the energy velocity was
computed, and is shown in the resonance regime
as the dotted curves on Fig. 1. Near ~0, V~ is
about 4 &10' m/sec, a decrement of about 10'
from nonresonance; this is a remarkable slowing
down of energy propagation. We also computed
the signal and group velocities [the latter with
use of S~,(k)/sk, ~, where k,„=Rek,]. All three
velocities are shown in Fig. 1, and in Fig. 2 we
exhibit inverse signal velocity, computed follow-
ing Birman and Frankel, ' and inverse group ve-
locity computed from the dispersion curves very
close to resonance. On the high-frequency side
of the resonance V~ «» (V«U». On the low-
frequency side, V~ «» V«&». Exactly at
resonance, V~- 0.1V~. In the resonance region,
Vs( Vc-

In order to test the theoretical prediction of a
sharp decrement in V~ near resonance it would

! be necessary to prepare a steady-state propagat-
ing physical polariton in the indicated geometry.
Recently several experimental reports have ap-
peared on a related, but not identical, subject:
the slowing down of an optical wave packet with a
frequency near resonance in GaAs, ' CuC1, ' and
CdSe. ' These experiments have in common that
an optical wave packet enters the crystal, and
then the arrival of the peak is measured by time-
of-flight-type method; they are transient meas-
urements rather than steady state. It is not our
purpose here to analyze these experiments in de-
tail but some comparison with our calculations
for GaAs is possible. Note that authors of Refs.
7 and 8 compare their data with the calculated
group velocity and report agreement, while in
Ref. 9 a Fourier -tr ansf orm method is used.
From Fig. 1 here, and the data of Ref. 7, we ob-
serve that in GaAs below resonance the peak ve-
locity fits best with the energy-transport velocity;
in the resonance regime, V~, Vs, and V~ are
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FIG. 2. c times inverse of group and signal velocities
vs reduced frequency & in the pseudo-stop-gap region.
Parameters used are defined in the text for GaAs.

10 -0.21
I I I I I I I I I 1 I i i I I I I I I I I

-0, I5 -0.9 -0.5 0.0 0.5 0,9 0.15 0.21
(af -4J -2

x 10
0

FIG. 1. Energy-transport velocity Vz and group
velocity V& vs reduced frequency & near resonance.
Range of signal velocity is shown near resonance.
Parameters used are defined in the text.

10, 12, and 15 times smaller than the reported
peak velocity; and just above resonance, V~
seems to fit best. At still higher frequencies,
effects of higher-lying exciton states, omitted
from Eq. (1), need to be included. It was recent-
ly pointed out to us by Sturge and Nelson" that
in these experiments the Gaussian pulse propaga-
tion model of Garrett and McCumber" may be
relevant. We have extended the theory of Ref. 11
to the nonlocal case and find that an incident
pulse propagates as a packet composed of sever-
al superimposed, distorted Gaussians, and the
peak of the resulting packet can in some circum-
stances travel with an effective velocity close to
the "naive" group velocity computed neglecting
the imaginary part of the propagation wave num-

ber. Our work on this will be reported elsewhere.
We believe it would be of interest to test the

predicted slowing down of energy-transport ve-
locity near resonance in excitonic-polariton media
by a suitably designed steady-state experiment.

We thank Dr. M. D. Sturge and Dr. D. Nelson
for comments. One of us (J. L. B.) acknowledges
the receipt of a J. S. Guggenheim Foundation
fellowship (1980-1981). This work was supported
in part by the U. S. Army Research Office under
Grant No. DAAG 29-79-6-0040, the National Sci-
ence Foundation under Grant No. DMR-78-12399,
and Professional Staff Congress-Board of Higher
Education Faculty Research Award RF13084.

R. Loudon, J. Phys. A 3, 233 (1970).
M. A. Bishop and A. A. Maradudin, Phys. Rev. B 14,

3384 (1976).
J. L. Birman and M. J. Frankel, Opt. Commun. 13,

303 (1975); M. J. Frankel and J. L. Birman, Phys. Rev.
A 15, 2000 (1977) .

M. J. Lighthill, J. Inst. Math. Its Appl. 1, 1 (1965),
reviews such a proof. The Lagrangian formalism which
underlies the proof t see Eq. (82) of this paperj requires
local variables, a system without boundaries (otherwise
a surface term enters), and a conservative system.



VoI.UME 47) +UMBER 3 PHYSICAL REVIEW LETTERS 20 Jvx.r 1981

None of these conditions apply in our case.
J. J. Sein, Ph. D. thesis, New York University, 1969

(unpublished), and Opt. Commun. 2, 170 (1970); J. L.
Birman and J.J. Sein, Phys. Rev. B 6, 2482 (1972);
G. S. Agarwal, D. N. Pattanayak, and E. Wolf, Phys.
Rev. Lett. 27, 1022 (1971); A. A. Maradudin and D. L.
Mills, Phys. Rev. B 7, 2787 (1973).

R. Maddox and D. L. Mills, Phys. Rev. B 11, 2229
(197m).

R. G. Ulbrich and G. W. Fehrenbach, Phys. Rev.
Lett. 43, 963 (1979).

Y. Masumoto, Y. Unuma, Y. Tanaka, S. Shionoya,
J. Phys. Soc. Jpn. 47, 1844 (1979) .

T. Itoh, P. Lavallard, J. Reydellet, C. Benolt a la
Guillaume, to be published.

M. D. Sturge and D. Nelson, private communication.
C. G. B. Garrett and D. E. McCumber, Phys. Rev.

A 1, 30' (1970).

Microscopic Derivation of the Helmholtz Force Density

H. M. Lai, W. M. Suen, ' and K. young
Department of E%ysics, The Chinese University of Hong Zong, Shatin, Hong Kong

(Received 80 April 1981)

The Helmholtz force density ft+ for a dielectric fluid placed in an electric field is
derived microscopicaQy. It is found that in addition to an electrical force, there is also
an additional mechanical force proportional to E and only the sum of the two equals f ~@.

Time-dependent cases are briefly discussed.
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Interest in the controversial problem of the
force density acting on a dielectric fluid placed
in an electromagnetic field" has recently been
revived by laser experiments' probing the force
density in nonstatic situations. Theoretically,
the problem can be approached either macroscop-
ically on the basis of thermodynamic or virtual
work principles, ' or microscopically by adding

up the forces on individual molecular dipoles. ' '
Attempts to bridge the two approaches by deriv-
ing the thermodynamic result from microscopic
models have so far failed: In one derivation, an
expression for the effective field, valid at only
one point, is differentiated without justification';
in another, the electric field is assumed to be
parallel to the density inhomogeneity. " It has
even been alleged that such attempts are doomed
to failure. ~

In this paper we extend the microscopic meth-
od, originally formulated for optical frequen-
cies,' ' to static situations and find complete
agreement with the thermodynamically derived
force density of Helmholtz. ""The most im-
portant point of this paper is the recognition that
the force density consists of two distinct com-
ponents: an electrical part f and a mechanical
part 4f +~, with the latter having been neglected
in previous treatments. ' '" This separation in-
to two components provides a fresh conceptual
understanding of the Helmholtz formula, and

predicts different behavior on different time
scales.

We begin by recalling the result of Helmholtz,
expressible as the following condition for equi-
librium":

v~, (pr)=-1(ve)E*+~v(p —E)=T&'&, {1)

where & and p are, respectively, the dielectric
constant and the number density of the fluid, E
is the macroscopic field, and &, should be taken
to be the same pressure function of p and the
temperature T as in zero field. ' The right-hand
side of (I) is usually called the Helmholtz force
density f . There are, in fact, a number of
competing expressions, " but (l) seems to agree
with experiment, '~ can be reliably derived, and,
as we shall see, is also supported by the micro-
scopic calculation.

In attempting to recover (I) microscopically,
we first generalize the work of Gordon, ' Peierls, '
and others' to arbitrary static fields acting on a
possibly inhomogeneous medium. The medium
is assumed to be nonpolar, nonmagnetic, iso-
tropic, and described by the Clausius-Mossotti
relation; moreover, only effects up to order E'
will be considered. The brief and physically in-
tuitive derivation given here can be made rigorous
by starting from an exact kinetic equation. "

The electrical force acting on a dipole IL( is
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