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A new method of calculating the one-loop self-energy contribution to the Lamb shift is
presented. The technique relies on treating as perturbations certain terms in the equa-
tion for the Dirac Coulomb Green's function, in the absence of which the equation can be
solved in terms of a simple integral representation. A new result for the 1S Lamb shift
is obtained and compared with previous calculations.
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The classic high-precision tests of QED, the
electron anomaly and the Lamb shift, have cal-
culational difficulties of very different character. '
The anomaly calculation involves the relevant ex-
ternal fi.eld, a constant magnetic field, only to
first order, with energy shifts induced by repeat-
ed actions of the external field being totally neg-
ligible for laboratory magnetic fields. The diffi-
culty of this calculation arises in treating the
numerous complicated graphs associated with
higher-order loops. On the other hand, the ex-
ternal field in the case of the Lamb shift, the
Coulomb field of the nucleus, cannot be taken to
act only once, or even a finite number of times,
but must be taken into account to all orders even
in the one-loop self-energy term. An attempt to
expand in powers of the external field leads to a
false expansion, in which the explicit powers of
Za from n Coulomb interactions, (Za)'"+', are
compensated when the loop integration is per-
formed by (Za) """, making all terms O((Za)'). '
This means that the full Green's function for the

electron in an external Coulomb field must be
used. Thus, even the lowest-order Lamb-shift
calculation involves evaluating the Bethe loga-
rithm, which is obtained as an integral over the
nonrelativistic Coulomb Green's function. In the
exact relativistic calculation, the Dirac Coulomb
Green's function must be used, and unlike free-
particle propagators, no closed form is known for
this expression, although a form involving an in-
finite sum over partial waves does exist. ' The
lack of a convenient form for this Green's func-
tion is the essential difficulty of the Lamb-shift
calculation. The main aim of this paper is to
circumvent this difficulty by exploiting the fact
that a simple integral representation can be given
for the Dirac Coulomb Green's function if two
terms, both of which are small if Zo. «1, are
treated as perturbations.

The usual approach to the evaluation of the 1S
Lamb shift is to expand in powers of Zn, the
strength of the Coulomb potential, forming the
series

lA„+A„ ln(Za) '+ (Za) A„+ (Za)'[A„ ln'(Za) '+A„ ln(Za) '+ G(Za) j ),
ma(Za)'

(la)

G(Za) =A«+ O(Za). (lb)

The constant A4, includes the Bethe logarithm, and thus involves the full nonrelativistic Coulomb
Green's function in its evaluation. However, of the remaining terms that have been directly evaluated,
namely A4„A„, A„, and A„, the full Green's function is not needed, a fact that can be traced to the
nonanalyticity of their coefficients in (Za)'. » All such terms come from the action of three or fewer
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Coulomb interactions. To directly evaluate
A«, however, another false expansion must be
summed. There have been two approaches to
this problem so far. Despite the complexity of
the Dirac Coulomb Green's function, Mohr' was
able to make a direct numerical evaluation of the
one-loop self-energy graph. However, although
there was no problem in evaluating the graph for
Z ~10, numerical difficulties prohibited a direct
evaluation for smaller Z's. By making an extra-
polation of his results for Z= 30, 20, and 10,
Mohr finds for the constant A„'

respectively. Voile A„ is not directly evaluated
in these works, large constants associated with

the logarithmic terms are kept: The errors
quoted are estimated bounds on the uncalculated
terms.

The discrepancy between the results of Mohr

and Erickson has until recently been academic,
but recent experimental advances in determina-
tion of the Lamb shift' (2S,~2-2P, ~2 splitting) re-
quire that the situation be resolved. The purpose
of this paper is to make a direct evaluation of

A60(1S)." My result is

A, = —31.0+1.7. (2) A60 = —33.2 +1.2, (4)

A60 25 4 +6 6 (3a)

A„=—25.79 ~0.67, (3b)l

This result is consistent with an earlier estimate
of the constant in the 1S Lamb shift made by
Erickson and Yennie, ' but inconsistent with a sub-
sequent refinement made by Erickson':

which is in distinct disagreement with Eq. (3b)
and, while somewhat smaller, is in basic agree-
ment with Eq. (2). A small discrepancy with the
result of Mohr may exist, but the large errors
associated with numerical integrations do not

allow a definite conclusion to be drawn on this
point.

The Lamb-shift calculation involves the evalua-
tion of

4~,~= —ie2 ), D»(k) Jd2p d'p'T((»(p)y„S(p —k, p'-k; E-k,)y, g»(p'),

where S(p, p'; E), the Dirac Coulomb Green's function, satisfies the equation

3

(zy, - ~ i- ~5((7, i'; 2) +,„.r I (

- -(, &(i f', &) = &'(( - (7').

Now, it has been known for some time that the nonrelativistic Green's function equation,

(P.'-P')G. (p, p'; E)+,.' 3

I- '-I. G.(q p' E)= &'(p-p'» p. =( E)",
p —q

can be solved in terms of an integral representation, "
52(p -p') vp, 1 1 1

4u2p, 2 1 1
~2 p 2 p~2 p 2

pl 2

1

(1 —p)'(p, '-p')(p. '-P')-4'. 'lp-p'I' '

The invariance of the nonrelativistic Coulomb system under an O(4) symmetry is used in obtaining this

relatively simple form. Since the deviations from the nonrelativistic energy spectrum arising from

use of the Dirac equation are O((Zo)' Ry), it should be possible for small-Z atoms to exploit their

closeness to the nonrelativistic system. To do this, we define

s(i i'; z) =-(zr. —~ (7+ m)G(p i'; E)+ 2,.' f (- -(, G(4 i', &(

and find that G(p, p'; E) satisfies

d3
I.
(E'-~'-)-p'j~(p, p', E)+ . , - ~

I, G(q, p', E)r . [p —q

+ d'V - - + 2, - -, ~(q, p';E)=~'(p-p').(Zo. )2 1 Za o. ~ (p —q)
4x p-q 2w' p-q '

(9)

(10)
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8=1057.860(9) MHz, (12)

which is in reasonable agreement with recent
measurements. ' However, there remain uncom-
puted corrections to the Lamb shift, most notably,
in terms of numerical significance, the first-or-
der binding correction to the two-loop self energy,
which can be expected to give contributions on the
order of 10 kHz. Therefore, while the present
calculation makes it likely that an apparent dis-
crepancy between theory and experiment is re-
duced, much theoretical work remains to be done
before a decisive confrontation between theory

Aside from the presence of the last two terms in
square brackets, to which we refer henceforth as
My and M„respectively, after scaling out a fac-
tor of 2m this equation is identical to (7), with
the identifications

P,' = E' —m', v = EZo/P, .
Therefore, following the approach of Hostler, "

one can develop a perturbation expansion for
G(p, p'; E) in terms of M„M„and Go(p, p'; E).
In order to calculate to 0(c.(Za)'), five pertur-
bations must be taken into account: M, and M,
each once, M, together with M, , and M, occur-
ring two or three times. These perturbations
lead to integrals similar to the one that gives the
Bethe logarithm, with the difference that instead
of a single Green's function being integrated over,
a perturbation term is sandwiched between two
such functions. All integrals 0(o.(Zn)') are per-
formed numerically, "while lower-order contri-
butions are calculated analytically. The Coulomb
gauge was found to be most convenient for this
calculation. A major advantage of the form in
Eq. (8) is that the terms where one Coulomb in-
teraction, or none, occurs are naturally sepa-
rated out, facilitating the treatment of mass re-
normalization and cancelation of spurious (Za)'
terms. A detailed description of the calculation
will be given elsewhere.

The result in Eq. (4) has been calculated only
for the 1S state of hydrogen, and so no direct con-
frontation with experiments measuring the 1Sy/2-
2P,~, splitting is yet possible. However, the state
dependence of A« is expected to be small, and if
one assumes that A60(lS», ) =A6c(28», ) -A„(2P»,),"
this result would give

and experiment at the level of a few kilohertz will
be possible.
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