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A new technique is presented for investigating the normal modes of an amorphous solid

with use of molecular-dynamics simulations.

This method, based on the quench echo,

can be used even in cases where the dynamical matrix is too large to be diagonalized.
This technique has been applied to study the onset of localization in a Lennard-Jones

frozen fluid.

PACS numbers: 63.20.Pw, 63.50.+x

In a recent paper' we have described a new
physical phenomenon, the quench echo, which
was observed in molecular-dynamics simulations
of solids. This echo occurs in the kinetic energy
of a solid which has been prepared by two succes-
sive quenches of the velocity; when the quenches
are separated by an interval £,, the echo appears
in the form of a deep minimum in the kinetic ener-
gy at a time £, after the last quench.

In the present paper we show that this phenome-
non can be developed into a new and powerful tool
for studying the eigenvectors and eigenfrequencies
of normal modes in large complex solids, even
in cases where the dynamical matrix is too large
to be diagonalized on present-day computers.?
The behavior of the eigenvectors in an amorphous
solid has enabled us to examine the onset of pho-
non localization. We find that at high frequencies
the phonons are all very well localized. As the
frequency is lowered they become more spread
out and extend over the entire sample. |

The sample we have studied is a 500-particle
amorphous solid obtained by rapid cooling from
the liquid state.* Periodic boundary conditions
were used and the particles interacted via a Len-
nard-Jones potential: V() =4€[(0/7)2 = (0/7)8]
with a cutoff at » =2.50. This glass was well
equilibrated for 200000A¢ [A? is the time step for
each iteration: At =0.017 =0.010(M /€)*'2, M being
the mass of the particles] at a reduced tempera-
ture T*=kyT /€ =0.11 and at a fixed number densi-
ty p*=0.95.

For a harmonic solid we have derived* an ex-
pression for the kinetic energy (or instantaneous
temperature) as a function of time after an arbi-
trary number of quenches. Each quench instan-
taneously sets every velocity to zero so that the
kinetic energy, and therefore T*, is also instan-
taneously zero. Subsequent to the quench, some
of the potential energy of the system is converted
to kinetic energy as time passes. After several
quenches separated by the intervals ¢,,f,,...,ty,
the kinetic energy can be expressed as

T =f0 D (w)A?(w) cos?wt, cos?wt, - - « cos?wt , sinwt dw,

where D (w) is the density of normal modes at
frequency w and A (w) is proportional to the aver-
age amplitude of the modes at that frequency. The
time ¢ is measured from the instant of the last
quench. If the intervals are all equal to ¢, then

T =f0®D (w)A%(w) cos wt, sinwtdw,
which for large N can be approximated by

m\¥21 nmT\ . 2<nn
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'where we have replaced the random coefficients
A?(w) by their average value, $A%. If 7/wp<{f,
<2r/w,, where wp is the highest frequency of a
mode in the solid, then D (u7/¢,) is nonzero only
for » =1 and only one mode exists (except for ac-
cidental degeneracies which would not be expected
in a glass). Therefore after many quenches
separated by the same interval ¢, (or multiples of
it, m¢,) all the modes in the solid are completely
drained of energy except the one with w =7 /¢,
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After making a large number of quenches the
system is allowed to develop without any extrane-
ous manipulation. If the moment of the last quench
is taken as ¢ =0, the quantities R2(t) =) ;[r; ()
~7;(0) and T (t) =7 ;v;% show a perfect sinusoidal
behavior with periods 27/w and 7/w, respectively.
Any departure from such behavior is an indication
of the “impurity” of the mode being isolated. In
practice, we have found three sources of difficul-
ties that make the isolation of a single normal
mode by this method a nontrivial task.

(i) Nearly degenerate modes of frequency w
=w,+ A can be difficult to separate from the de-
sired mode. One can detect the presence of such
nearby modes by observing that the kinetic ener-
gy shows a characteristic beating as a function of
time. To get rid of the unwanted mode one must
simply let the system run undisturbed until the
two modes are a quarter period out of phase and
quench the system again at this time, The de-
sired mode will be unaffected while the unwanted
mode will have all its energy drained from it.

(ii) Another difficulty in isolating a high-fre-
quency mode is that low-frequency modes may
still be present after many quenches. Fortunate-
1y R2(t) is very sensitive to low-frequency modes
since if two modes have the same kinetic energy,
their displacements will vary as w™ 2, Again these
low-frequency modes can be removed by quench-
ing the solid at a time when the low-frequency
mode has a maximum kinetic energy and the high-
frequency mode has zero kinetic energy. All
these judgments can be made by the time behavior
of R and T.

(iii) The third difficulty is relatively minor.
The frequency corresponding to the time interval
t, between successive quenches may not be the
frequency of any mode in the solid. To remedy
this situation one can simply shift the time {; by
an appropriate small amount so as to correspond
to the period of the oscillations appearing in the
kinetic energy after several quenches have been
performed.

There are many possible variations on the
method we have described above to isolate nor-
mal modes. In particular one can alternately heat
and quench the system at quarter-period inter-
vals instead of just quenching at half-period in-
tervals as described above.

We have isolated a large number of normal
modes in the Lennard-Jones frozen fluid described
above. We were interested in studying the local-
ization of the modes in this system and so we
concentrated our attention on the high-frequency
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region of the density of states. With use of the
method explained above, a mode was considered
“pure” when finally T and R? showed no degrada-
tion in their perfect sinusoidal behavior for at
least 150 complete cycles (~ 900 steps of molecu-
lar-dynamics integration).* The final tempera-
ture of the solid after a single mode was purified
was low, T*<10"%, so that anharmonic effects
were negligible. Anharmonicity could be impor-
tant in real solids with light atoms where even
the quantum zero-point energy could be sufficient
to produce observable anharmonic effects. In
this paper we are studying only the harmonic sys-
tem which is well described by classical mechan-
ics.

For each mode we have calculated two quanti-
ties with which to characterize the degree of
localization. The first is P™* =N} v,;%/(200,;%)?,
or the inverse of the so-called “participation
ratio,” used by Bell and Dean’® for the same pur-
pose. For modes extending over the whole sys-
tem this quantity will be of order unity (for a
thermal system it is §); for localized modes its
value will be large. We have also calculated the
kinetic energy-kinetic energy correlation func-
tion.

22q ;0% %00 = 7is)

Ei,jé(r—yij) ’
where 7;; is the distance between the particles ¢
and j. The denominator is the radial distribution
function at distance 7.

In Fig. 1 we show 4 (r) for two modes, one highly
localized and one extended. Notice that the lo-
calized mode has a large slope on this logarithm
scale and decays by 3 orders of magnitude in a
distance of four interatomic spacings. In this
mode 98% of the kinetic energy is contained in
twelve atoms. The extended mode does not show
any tendency to decay. This dramatic change in
behavior has occurred in a narrow range of fre-
quency. The slope, L™*, of Ink(r) vs r for the
various modes is shown as a function of frequency
in Fig. 2(a). Below wT =24.5 the modes are clear-
ly extended over the size of the system while
above that frequency the modes get progressively
more localized with increasing frequency. The
same trend can be seen in Fig. 2(b), where the
quantity P™! is plotted versus frequency. At high
frequencies the inverse participation ratio is
large while at lower frequencies it is small. A
normal mode with a frequency as low as w7 =8
has been isolated showing the same trend, i.e.,
very small values of L™ ! and P!,

hy) =
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FIG. 1. The function A@) vs »/o for an extended mode
with w7=21.3 (triangles) and for a localized mode with
wT=28.9 (circles).

The structure of the individual normal modes
was analyzed to determine the mutual coordination
of the atoms participating in highly localized
modes. This analysis was undertaken because of
a recent theory by Cohen, Singh, and Yonezawa®
which predicted that the most localized modes in
a solid would be in regions with even-numbered
coordination rings. We found that all the local-
ized modes are made up of threefold rings of
participating atoms indicating that the theory is
not applicable to our close-packed amorphous
solid.

We have checked that our modes are indeed the
true normal modes of the system. Although the
1500 1500 matrix exceeded the available storage
it was possible to diagonalize the dynamical ma-
trix for a subset of the particles (up to 300) in-
side a spherical region if all the atoms outside
the sphere were kept stationary. We have done
this in regions where we found highly localized
normal modes by the quench method. The eigen-
functions of the dynamical matrix were found to
correspond to the localized modes we found from
our quench analysis but only for the highly local-
ized modes; the more extended ones are not com-
pletely contained within the sphere of particles
allowed to move. In only one case we found that
a localized mode which we had isolated by quench-
ing was actually a combination of two nearly de-
generate modes.
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FIG. 2. (a) L™!, the slope of Ink(»), vs frequency.
(b) P~!ys frequency. The inset in (a) shows the density
of states for this system (taken from Ref. 3).

In Fig. 3 we show the dynamic structure factor®
divided by | 2|2 for two modes on either side of
the localization threshold to see if inelastic neu-
tron scattering can distinguish between a localized
and an extended mode. The same behavior is
seen for all the high-frequency (w7 >21) modes
we have isolated. We see that there is no quali-
tative difference between the structure factor for
these two modes. The value of S(¢,w) is peaked
near ko =4.5 which is approximately one half the
distance to the first peak in S(¢). These modes
are thus made up primarily of neighboring atoms

T T T T
|O[* . ]
-
81 - -
L AL
aA
6'i a “‘ ]
_ 4+ - "“A‘ j
= zL “ “‘e ]
pa— = A -
& | wT ZIEA . S e “é%“ . |
Ob——aaas o~ .,,.,,,,,,,,,,‘ —
47 . %o T
| wtr=28.9 ° .
21 * W 0
% ¢ N
ol o’ ! | ) "‘l‘.’ S
o I 2 3 4 5 6 7 8 9 10
ko

FIG. 3. |k|"%S(k, w) vs k for the two modes with fre-
quencies wT=21.3 (triangles) and w7=28.9 (circles).
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moving out of phase with respect to one another.

We have presented here a new technique for in-
vestigating the normal-mode structure of an
amorphous solid using molecular-dynamics
studies. This technique can be used where all
conventional techniques of diagonalizing the dy-
namical matrix no longer work since the matrix
is too large and not sparse enough to diagonalize
even on modern-day computers. The technique
should also be applicable to finding other kinds of
eigenfunctions of second-order equations, such
as the wave functions of electrons. We have ap-
plied the technique to the localization of modes in
a Lennard-Jones frozen fluid and found that there
is a threshold frequency above which localization
occurs. The study of localization by molecular-
dynamics techniques is of particular interest
since it is a true interacting many-body system.
As the amplitude of a mode is increased it inter-
acts more strongly with other modes. The way in
which localization affects the interaction of modes
has not been previously studied. Simulations of
electron localization” do not offer the possibility
of studying this kind of phenomena. We are cur-
rently pursuing the studies of our localized modes
as a function of amplitude in order to understand
how mode-mode interactions affect their proper-
ties.
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The configurational relaxation time for the F(II) center in KCl:Li has been measured
with use of picosecond laser techniques. The saddle-point configuration of the electron-
ically excited state is stabilized by means of multiphonon emission, and has a zero-

temperature lifetime of 13 psec.

PACS numbers: 61.70.Dx, 63.20.Mt, 78.45.+h

In this Letter, we report the first direct meas-
urement of the configurational relaxation time for
color centers. In particular, we have measured
the rise of optical gain from the relaxed excited
state (RES) of F ,(II) centers following excitation
with a subpicosecond optical pulse. For the F,(II)
center in KC1:Li, we find that the configurational
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relaxation has a lifetime of 13 psec for tempera-
tures below 10 K and shows a temperature de-
pendence characteristic of a multiphonon process.
The F, center is an F center in which one of the
host cations adjacent to the vacancy is replaced
by a dopant cation.! Type-II F, centers are dis-
tinguished from F centers and type-I F, centers
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