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The first measurements of high-energy x-ray emission (hv- 30 —300 keV) by high-Z
microballoon targets irradiated at 5X10 & p&2x10 K/cm by 10.6-pm laser light are
reported. An exponential spectrum with a slope WH - 250 keV provides the best fit to
spectrometer data at cp&

= 10'6 W/cm . The hard-x-ray yield indicates that a substantial
fraction, probably between 10% and 100%, of the absorbed laser energy is converted to
hot electrons. The slope N'z is proportional to the fastest ion energy.

PACS numbers: 52.50.Jm, 79.20.Ds

Laser-fusion target performance can be signifi-
cantly limited by fuel preheat. Energetic elec-
trons created at the laser absorption surface
deposit energy in the fuel, preventing efficient
compression. The electron distribution may be
diagnosed by measurement of high-energy x-ray
bremsstrahlung created by electron interaction
with the target material. We report the first
such measurements of targets irradiated by the
10.6-pm Helios CO, laser facility. '

The slope of the target hard-x-ray continuum
was determined by a least-squares fit to signals
from a ten-channel array of broadband filter-
scintillator channels spanning the region hv
~30-300 keV. Five of the channel response func-
tions are shown in Fig. 1. Priedhorsky and Lier
describe the instrument, and its calibration,
analysis, and background tests in detail. '

A series of gold- or tungsten-coated solacels
(hollow nickel microballoons) were irradiated
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FIG. 1. Five typical spectral response functions
from the ten-channel high-energy x-ray spectrometer.

at a range of focus conditions. The laser energy
ranged from 2 to 8 kJ in a 0.75-ns (full width at
half maximum) pulse. The targets were 300 and
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dN/dE, ~E, " " 'exp(-E, /kT, ). (2)

The electron energy is F-„AT, is the hot-elec-
tron temperature, and n is the dimensionality of
the Mmcwellian distribution. Theoretical studies
of hot-electron generation indicate a Maxwellian
electron distribution, with dimensionality n
from 1 to 3 depending on the mechanism generat-
ing the hot electrons. ' Most hot electrons are
bound by the target potential, so that they deposit
their energy in the vicinity of the target. ' In tha.t
case, they might produce a "thick-target" brems-
strahlung spectrum, similar to that from an x-
ray tube, where the electrons are completely
stopped by the target. The classical thick-target
bremsstrahlung cross section would yield an ap-
proximately exponential x-ray spectrum, with
slope kT„ for an electron distribution as in Eq.

1000 p,m in diameter, with 1-2-pm nickel walls
coated with 10-15 pm of high-Z material. There
is no direct measurement of laser intensity; it
is instead estimated from the peak laser power,
measured with a pyroelectric detector and
normalized by calorimeter data, and from the
nominal laser spot size. The laser spot-size
diameter containing 50/o of the laser energy was
determined from earlier encircled energy meas-
urements; shots were taken with 85-, 120-, and
300- pm spot sizes, corresponding to a focus 150,
400, and 1000 pm beyond the irradiated surface.
The peak laser intensity averaged over the half-
power diameter is V/~, = —,'P/A, where P is the
peak laser power, and A. is the half-energy area.

The observed signals could be fitted well by an
exponential spectrum,

E(hv) =A exp( hv/kT-„),

where A is in units of J/keV sr. The kT„were
determined by a least-squares fit. Combining
errors in calibration and signal readout, we
estimate lo errors ranging from 10% to 25% in
the detector signals. The smallest errors cor-
respond to the most recent measurements. The
spectrometer data were fitted by exponentials
with acceptable g'. Given an exponential fit, all
kT~ which fit the data, with g'&X~'+1 are ac-
ceptable at a 10 level of confidence. ' This con-
fidence level includes random and systematic
errors; the relative shot-to-shot error is small-
er.

Computer simulations indicate that kT~ is an
underestimate of the hot-electron temperature.
The calculations assume a Maxwellian electron
distribution,
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FIG. 2. X-ray continuum slope kT& as a function of
y&/& for high-E shell targets.

(2). However, preferential loss of energy to fast-
ion expansion from the most energetic electrons
softens the bremsstrahlung spectrum. Variation
of bremsstrahlung cross section and time averag-
ing over the laser pulse also contribute to the
discrepancy between AT~ and the peak AT, . For
AT, =100-500 keV, the simulations yield approxi-
mately exponential x-ray spectra with kT„=(0.5-
0.8)k T, .

The total radiated energy implied by Eq. (1) is
E„=4&AkT„, under the assumption of symmetri-
cal radiation. Because of the flat response of
the detectors, E„can be measured more accurate-
ly than the slope kT~. E„ is calculated from the
best-fit spectrum, but for any acceptable kT„,
the implied E„ is within 10/0 of the best-fit value.
E, is normalized to a fractional x-ray yield Y

=E„/E~, where E~ is the laser energy.
By comparing a Ross-filtered pair of spectrom-

eter channels, we have determined that strong
gold K-line emission is not interfering with our
estimate of the continuum slope. To a 20 level of
confidence, tungsten Ke emission is less than
6.4% of the total integrated hard-x-ray flux.

The best-fit x-ray temperature, AT„, from the
hard-x-ray spectrometer is plotted against y1/2
in Fig. 2. The data are best fitted by the power
law

0.42+ 0, 12

10"W//cm'

for 5xl0" &qi, /, &2xl0" W/cm'. The uncertainty
of the exponent obtains mostly from uncertainty
in the laser spot size, and thus y1/2 We assume
that y,g, (150-pm defocus)/y~, (1000-pm defocus)
is known to within a factor of 2. The scaling of
kT„with energy at constant focal condition is
consistent with Eq. (3) (see Fig. 2).

Previous experimental studies have shown
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Y =(1.2",', ) x10 'k T„(ke-v) . (4)
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FIG. 3. High-energy x-ray yield Y as a function of
is the fraction of incident laser energy radiated

in high-energy x rays. The solid lines show the best
fit, and bounds, & = (1.2+0. 4) X 10 4'T& (keV).

much lower x-ray temperatures at 10.6- pm
laser intensities which nearly overlap ours."
For instance, Enright, Richardson, and Burnett
find kT„=10 keV at yg, = 2 X 10"W/cm', ' a value
inconsistent with a modest extrapolation of Eq.
(3). The earlier experiments involved single-
beam illumination of low-Z slabs with a 50-100-
pm focal spot, unlike the present high-Z, multi-
ple-beam, large-focal-spot (at low intensity) ex-
periment. Additionally, Enright, Richardson,
and Burnett measured the x-ray spectrum from
4 to 25 keV, while the present measurement is
weighted to much higher energy. Kephart, God-
win, and McCall showed that the x-ray spectrum
at q,~, =10"W/cm' hardens with increasing pho-
ton energy'; measurement at higher energies
thus yields higher temperatures. Our higher
kTH, compared to Refs. 6 and 8, is therefore
not surprising. The intensity scaling of Eq. (3)
is not inconsistent with previous experimental
and theoretical studies, which suggest kT~

@I/3 7, 9

We observe that the hard-x-ray yield increases
with x-ray temperature. Figure 3 shows F as a
function of kT~. The yield data are bounded by
the relationship

o. =(0.04-0.14)(Y„/Y)(kT„/kT, ) . (7)

For Y«/Y and kT„/kT, of order unity, Eq. (7)
suggests that the inferred electron spectrum is
a substantial fraction of the absorbed laser en-
ergy (o. could be no larger than the laser light
fraction absorbed by the target, which is 0.25
for p 1Q -1Q 5 W/cm )

We observe the correlation between the velocity
of the fastest ions emitted by the target and the
k T~ from x-ray data, first reported by Tan,
McCall, and Williams. " For planar targets
irradiated with a single beam at 10"& p &10"W/
cm' "

k T~ = 7.5 & 10 "v,. ke V,

where v, is the fastest ion velocity in centimeters
per second. Such a proportionality is to be ex-
pected for an isothermal expansion into vacuum. '
At much greater intensity and in a spherical
geometry, the same functional dependence holds.
The present data can be fitted by

kT~=19&10 "v,. ' keV,

over 5 x 10"& y,y, & 2 x 10" W/cm'.
Measurements of hard-x-ray radiation from

10.6- p.m laser -illuminated gold microballoons
indicate a very penetrating and intense spectrum,
with a best-fit exponential slope -250 ke V for
p, -10"W/cm'. The hard-x-ray yield implies
that a. significant fraction of the absorbed laser
energy is converted to energetic electrons. The
hot-electron population inferred from hard-x-

The proportionality between 1' and kT„ is remi-
niscent of the classical thick-target bremsstrah-
lung yield, '

f„=1.1x10-'ZE„
where f„ is the bremsstrahlung efficiency for
monoenergetic electrons of energy E, (keV) inci-
dent on a target of atomic number Z. Keeping
in mind that the fast-ion effects which reduce
kT„relative to kT, also reduce the hard-x-ray
yield from a given electron distribution, we
would like to derive an estimate of the total en-
ergy in hot electrons required to produce the ob-
served spectrum. One calculates, for the spec-
trum of Eq. (2) and dimensionality n= 1 to 3, a
classical thick-target yield

Y«--(1.3-2.2) x10 'ukT, (keV),

where e is the efficiency of conversion of inci-
dent laser energy to fast electrons. Equations
(4) and (6) imply
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ray measurements presents a major problem for
10.6- pm laser-fusion target design at high inten-
sities.

We would like to acknowledge helpful comments
on the analysis and presentation of these results
from D. Wilson, A. Petschek, S. Singer, D. Gio-
vanielli, G. Stradling, and F. Cordova. This
work was performed under the auspices of the
U. S. Department of Energy.
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