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A new gauge-invariant effective action is proposed for quantum gravity, based on older
results that go beyond finite-order perturbation theory. Expressed in coordinate space
rather than momentum space it should find important applications in theory of the early
univer se.
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Attempts to determine the dynamical behavior
of the universe in its early moments have hereto-
fore been based on the semiclassical approxima-
tion' ":One computes particle production and
vacuum polarization in a given time-varying
background metric, constructs an expectation
value (T"') for the stress tensor, and then ad-
justs the metric in such a way as to satisfy the
self-consjstency condition R""—zg""R = 8xG

&& (Ti' v)

The semiclassical method is a one-loop ap-
proximation to the full theory. " It unfortunately
suffers from ambiguity. Firstly, (T"") is not in-
variant under quantum field redefinitions that in-
volve the background metric'~; it can be made in-
variant only by including graviton loops. Second-
ly, (T"") must be regularized and renormalized.
Renormalization involves the subtraction of
terms that do not appear in the classical action
and hence cannot be absorbed in parameter re-
definitions. New arbitrary parameters make
their appearance.

The need for graviton loops reminds us that we
cannot study the early universe without quantiz-
ing the gravitational field itself. The appearance
of arbitrary parameters reflects the nonrenormal-
izability of quantum gravity and tells us that we
must go beyond one loop, indeed beyond finite-

order perturbation theory.
The chief theoretical tool for studying quantum

corrections to classical dynamical behavior is
the effective action. A new theory of the effective
action for gauge fields, including the gravitation-
al field, has recently been worked out to all or-
ders ' A set of computational rules exists
leading to an effective action of the form r =8+Z,
where both the classical action S and the quantum

correction Z are gauge invariant. I do not dis-
cuss these rules here, beyond remarking that in
Yang-Mills theory they greatly simplify the re-
normalization program, completely bypassing
BRS techniques. ' ' In this note I describe the
general structure of Z in gravity theory and sug-
gest an approximate form for it based on non-
perturbative results already obtained a number
of years ago.

The construction of Z requires the introduction
of gauge-breaking terms and ghost propagators
that are covariant upwith respect to the effective
rnetricg„„'"=(out)g„, )in)/(out)in). " The func-
tional form of Z is not independent of the choice
of these terms. However, the solutions of the ef-
fective field equation
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can be shown to be the same for all choices.'""'"
Furthermore, Z is gauge invariant for all choic-
es. In gravity theory this is expressed by the
identity"

ically Qat space-times, is not dynamically bro-
ken. Then

( 5 Z/ 5g„„)g„„=rl „„=0,

(5Z/5g„„); v =0, (2)
whence, in virtue of (2),

the covariant derivative being that defined by the
effective metric.

We first study Z near flat space-time with (R'

topology. I assume that the Minkowski metric
g&„ is a stable solution of the effective field
equation (1) just as it is of the classical field
equation 5S/5g„„=0. That is, I assume that the
Poincare group, which is relevant for asymptot-

i

g2g
gpU ipp (4)

Denote by Z"""(O) the Fourier transform of
(5'Z/5g„„5g /, .), -„, with the 5function expres-
sing momentum conservation removed. Equation
(4) is equivalent to Z"""(p)P„=O,of which the
general solution, respecting Lorentz invarianee
and the index symmetries of Z"" ', is

Z"""(O)=t(n"'6"+0"'6-)P' (I"'O-'P'+6"'O'P +q-I "P'+6"'P"P')P'+2O"O'P P']Z (P')

—tn"'0 P'-('0" P P +8 P"P }+P"P'P P') Z.(P')

Z, and Z, being the two form factors of the graviton.
If the usual covariant gauge-breaking term is employed, yielding (q&,q„, + q&, q„, —q&„q„)/P2 for the

conventionally scaled bare graviton propagator, then expression (5) leads to a full graviton propagator
of the form

t }|/G I//T I/1 OV/J 3 p}// G}T PP (Op//PuPT Op. P P.+}..P„P, + n//, Pp. ) i(P )ltP + up P Zi(O ))

.' ~,.n. ,tP" ~, 'P Z.(-O }) .~,- t—(~ O-.O, ~ Py. )P" 2'.», )tZ, (O') - Z.(P')]
&tO'+ ~P 'O'Zl(O')] 'tP'+/ P 'P'Z2(P')] ', (6

where

Z, =4m„

and where I have chosen the slightly unconven-
tional definition

p, =(I6~G) -~'

for the Planck mass. In order that there be
no physical ghosts in the theory neither p'
+ pp 'p Z, (p') nor p'+ pp 'O'Z, (O') may have
any zeros on the real axis in the complex P'
pla.ne, other than p'=0.

In the one-loop approximation of pure quantum
gravity both Z, and Z„after renormalization,
take the form constln(p'/y. '), where p. is an
arbitrary scale parameter. Since the form fac-
tors become important only when ip'i is of the
order of p, p' and since experimental masses
are negligible compared to p„ the factor ln(O'/
p') remains effectively unchanged if the one-

loop contributions of all other fields are added
to Z, and Z,. Only the constant multiplying ln(p'/
jP) changes. If one could believe the one-loop
approximation then this constant would have to
lie between 0 and (pp2/p2)e for physical ghosts
to be absent. Alternatively, this could be re-
garded as a constraint on p,.

The one-loop approximation is of course not
believable, among other reasons because p, is
arbitrary. Since quantum gravity is not per-
turbatively renormalizable we must leave Z,
and Z, unsubtracted and attempt to get finite
answers from the theory by nonperturbative
means. It is convenient to transform from
momentum space back to ordinary space-time.
It is not difficult to show that if 2 is expanded
as a functional power series in y&, = g&, —g & „
then the term of lowest order is quadratic in

y&, and is uniquely determined by Eqs. (5) and

(7) to have the form

Z,„=Jd'x fd x ' t 'Z, ((x -—x')') C „„,(x)C "' (x ') ——,
' Z,((x -x ')') A(x)A(x') ],

where C„„,is the linearized Acyl tensor, A is
the linearized curvature scalar, and Z, and Z,
are the Fourier transforms of Z, and Z„respec-

vely
In the one-loop approximation without subtrac-

tion, the dominant singularities of both Z, and Z,
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gp=(2~p, p) '=1.82xl0 "cm. (10)

The singularity of the rung factor lies on a
hyperboloid at a distance A, p outside the Minkow-
ski light cone and implies noncausal propagation
relative to Minkowski space-time. This is neith-
er surprising nor alarming. When the metric

are proportional to i/(x -x')'. This singularity
structure, which renders expression (9) logarith-
mically divergent, arises from products of pairs
of Green's functions i/(x -x')', together with loop
factors -i, in typical self-energy graphs. How

does it get modified in the exact theory T

A partial answer to this question is known
in the case of ladder graphs in which the free
ends at the top of each ladder are joined together
to make a single line, leaving only the two free
ends at the bottom. The dominant high-energy
contribution to the infinite sum of all such graphs
can be expressed as the solution of a single inte-
gral equation. The line at the top contributes a
factor i/(x -x')' as always, but the rungs, when

summed to a.ll orders, contribute a factor i/
[(x -x')'-Xp'], where

A, p

P

g Z

(x -x')'- Zp (x -x')'.

The integral on the right of (11) gives concrete
expression to the old idea that quantum gravity
"smears" the light cone. ' A more complete
theory, which sums other graphs besides ladder
graphs, would presumably insert a smearing
function co($) in the integrand.

Expressions (9) and (11) admit of immediate
generalization to an approximation for Z, and
hence for I', that is invariant under the full dif-
feomorphism group (the gauge group of gravity
theory):

itself undergoes quantum fluctuations "real"
space-time is Minkowskian only in an averaged
sense.

These results suggest that Z, and Z, may be
well approximated by choosing each to be propor-
tional to i/(x -x')'[(x -x')'- A. p ] or, equivalent-
ly, to

1 ~ ~ 2fgil2fi d4»+ + 2jd4» Jd4» gll/2()»gl/2(xt)
a (x, x ') ——,

' z p' + i 0 a(x, x ') + i 0

x[ —,'A, g""g" 'g'~ g' C „„«(»)C„,&, z, ~, (»') -~»A~(x)il(x')]. (12)

Here g is -det(g„, ), g "" is the parallel displace-
ment bivector, " a(x, x') is half the square of the
geodetic distance between x and x',"and C„„,
and R are the Weyl tensor and curvature scalar
of the full nonlinear theory. A, and A, are num-
erical coefficients whose precise values depend
on the numbers and kinds of matter fields includ-
ed, but whose magnitudes are not vastly different
from unity. The i 0 in the "propagators" specifies
how the poles are to be skirted in the double inte-
gral, and the other factors i remind us that both
F and the effective field, which is an "in-out"
average, are generally complex valued.

Although expression (12}has been derived by
arguments starting from flat space-time, I pro-
pose that it be taken seriously. even under condi-
tions of strong curvature (R„„„)pp') and with
topologies other than ~. Efforts are currently
under way to test it on compact Robertson-Walker
universes to see whether, under generic realis-
tic conditions,

' it will suppress the initial curva-
ture singularity. Among the properties of Robert-
son-Walker models that simplify this investiga-
tion is conformal flatness. The Weyl tensor dis-

! appears from expression (12), taking with it the
parallel displacement bivectors, leaving a(x, x ')
as the only difficult geometrical quantity to com-
pute and A., as the only adjustable constant.

Expression (12), based as it is on a quadratic
approximation to Z that is determined solely by
the graviton propagator, cannot be expected to
yield accurate vertex functions (third functional
derivatives and higher). Nevertheless it is well
known" that in regions of momentum space where
Z, (p') and 2',(p') are slowly varying, e.g. , in the
ultrahigh-energy region !p'!» p p (see below),
the vertex functions axe fully determined by the
graviton propagator in virtue of the gauge-in-
variance condition (2). Therefore, if Z, and Z,
are well approximated by (11) then expression
(12) has the correct structure as x'- x and will
yield qualitatively correct dynamical behavior.
More accurate vertex functions at lower energies
could in principle be obtained by adding to expres-
sion (12) higher-multiple integrals in which the
curvature appears cubically, quartically, etc. ,
along with factors involving g"" and a(x, x'}.

1649



VOLUME 47, NUMBER 2) PHYSICAL REVIEW LETTERS 7 DECEMBER 1981

It is not difficult to verify that expression (12)
yields the graviton form factors Q(p') =&,E(p'),
Z,(p') =A,F(p'), where

77' H & l(()i p j0)~l )
2 (y 'p' '0)"'

)~, 'p' —'0 '

(13)

The function E(p') is complex for spacelike mo-
menta (and hence yields no tachyon ghosts) and
real for timelike momenta. In both cases it
damps to zero as ~p'~ —~. It yields no timelike
ghosts provided A, and A., lie between -~ and
1/(2s)'. This may be regarded as a constraint
on the number and kinds of fields that nature will
permit in addition to the gravitational field.
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