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A new gauge-invariant effective action is proposed for quantum gravity, based on older
results that go beyond finite-order perturbation theory. Expressed in coordinate space
rather than momentum space it should find important applications in theory of the early
universe.
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Attempts to determine the dynamical behavior
of the universe in its early moments have hereto-
fore been based on the semiclassical approxima-
tion'"*': One computes particle production and
vacuum polarization in a given time-varying
background metric, constructs an expectation
value (T'*?) for the stress tensor, and then ad-
justs the metric in such a way as to satisfy the
self-consistency condition®? R*” - 3g*YR =87G
x(THv),

The semiclassical method is a one-loop ap-
proximation to the full theory.’® It unfortunately
suffers from ambiguity. Firstly, (I'*") is not in-
variant under quantum field redefinitions that in-
volve the background metric'4; it can be made in-
variant only by including graviton loops. Second-
ly, (T"") must be regularized and renormalized.
Renormalization involves the subtraction of
terms that do not appear in the classical action
and hence cannot be absorbed in parameter re-
definitions. New arbitrary parameters make
their appearance.

The need for graviton loops reminds us that we
cannot study the early universe without quantiz-
ing the gravitational field itself. The appearance

of arbitrary parameters reflects the nonrenormal-

izability of quantum gravity and tells us that we
must go beyond one loop, indeed beyond finite-
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order perturbation theory.

The chief theoretical tool for studying quantum
corrections to classical dynamical behavior is
the effective action. A new theory of the effective
action for gauge fields, including the gravitation-
al field, has recently been worked out to all or-
ders.'®+ 1 A set of computational rules exists
leading to an effective action of the form I' =S +Z,
where both the classical action S and the quantum
correction ¥ are gauge invariant. I do not dis-
cuss these rules here, beyond remarking that in
Yang-Mills theory they greatly simplify the re-
normalization program, completely bypassing
BRS techniques.}”*® In this note I describe the
general structure of Z in gravity theory and sug-
gest an approximate form for it based on non-
perturbative results already obtained a number
of years ago.

The construction of T requires the introduction
of gauge-breaking terms and ghost propagators
that are covariant with respect to the effective
metric g,,% ¢ =(out| g, ,|in) /{out|in).** The func-
tional form of X is not independent of the choice
of these terms. However, the solutions of the ef-
fective field equation

0= 0T _ 8S , 0%
0guy 08y, 08uy

(1)
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can be shown to be the same for all choices %20 ically flat space-times, is not dynamically bro-
Furthermore, X is gauge invariant for all choic- ken. Then
es. In gravity theory this is expressed by the _ _
identity%I y (52/5g“ v)guv TN~ 0, (3)
(62/6g,,);v =0, 2) whence, in virtue of (2),
2
the covariant derivative being that defined by the 0= Sup=14,=0 (4)
3 3 6g 5g ot kv mv *
effective metric. pv=s0'T v
We first study Z near flat space-time with ®&*
topology. I assume that the Minkowski metric Denote by Z#"°7(p) the Fourier transform of
M,y is a stable solution of the effective field (6°2 /0y 6861 11)g =, With the 0 function expres-
equation (1) just as it is of the classical field sing momentum conservation removed. Equation
equation 65/6g,,=0. That is, I assume that the (4) is equivalent to 2 “*°"(p)p, =0, of which the
Poincaré group, which is relevant for asymptot- | general solution, respecting Lorentz invariance

and the index symmetries of =", ig
SEOT( ) =[PP + pE Tt — (1E VT + 1P T + o T + 1 Tp pO)p + 2pFp % | E (b7
=0 pt = (" p T + 7T pY) +p¥p p P I 2457, (5)
%, and %, being the two form factors of the graviton.
If the usual covariant gauge-breaking term is employed, yielding (nuon” + N1 Mvo = npynor)/pz for the

conventionally scaled bare graviton propagator, then expression (5) leads to a full graviton propagator
of the form

L MuoMur + Mpr wo =% M Nor + B 2(Mpad vl 1 + Npr PP o+ Nuobulr +Mur D o) Z1( 0D IL0% + kp~2 p*2,(p7 ]
=5 NuuMorl D+ e 2p* (P 7 =% e P [(Nwp o r + Neorb w0 )D* + 26y ub ob ) [ Z21(p%) = Z,(p7)]

XLp?+ e 21 (pH)] T + up " 2 p?)] 7, (6)
where |
a= L eS = loop contributions of all other fields are added
Zy =42y, Z,=3%,- 2%, (7 to Z, and Z,. Only the constant multiplying In(p?/
and where I have chosen the slightly unconven- 4?) changes. If one could believe the one-loop
tional definition approximation then this constant would have to
_ V2 lie between 0 and (;%/ u®)e for physical ghosts
Bp= (167TG) (8) . .
to be absent. Alternatively, this could be re-
for the Planck mass. In order that there be garded as a constraint on p.
no physical ghosts in the theory neither p2 The one-loop approximation is of course not
+ up~2p%% (p?) nor p®+ up~?p*,(p% may have believable, among other reasons because u is
any zeros on the real axis in the complex p? arbitrary. Since quantum gravity is not per-
plane, other than p%=0. turbatively renormalizable we must leave 2,
In the one-loop approximation of pure quantum and Z, unsubtracted and attempt to get finite
gravity both 2, and %,, after renormalization, answers from the theory by nonperturbative
take the form constIn(p?/u?), where u is an means. It is convenient to transform from
arbitrary scale parameter. Since the form fac- momentum space back to ordinary space-time.
tors become important only when |p?| is of the It is not difficult to show that if % is expanded
order of ip? and since experimental masses as a functional power series in ¢, =gy, =N,
are negligible compared to pp, the factor In(p?/ then the term of lowest order is quadratic in
u?%) remains effectively unchanged if the one- ¢,y and is uniquely determined by Eqgs. (5) and
| (7) to have the form
Daqua =S d% [a% [15 (1 =x))C o ()CH (") = Z((6 —x V)RR ], (9)
where C,,,, is the linearized Weyl tensor, R is tively.??
the linearized curvature scalar, and f:l and 2";2 In the one-loop approximation without subtrac-
are the Fourier transforms of %, and 2, respec- tion, the dominant singularities of both %, and 2.32
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are proportional to i/(x —x’)* This singularity
structure, which renders expression (9) logarith-
mically divergent, arises from products of pairs
of Green’s functions i/(x —x')?, together with loop
factors —Z, in typical self-energy graphs. How
does it get modified in the exact theory ?

A partial answer to this question is known®:2*
in the case of ladder graphs in which the free
ends at the top of each ladder are joined together
to make a single line, leaving only the two free
ends at the bottom. The dominant high-energy
contribution to the infinite sum of all such graphs
can be expressed as the solution of a single inte-
gral equation. The line at the top contributes a
factor i/(x —x’)? as always, but the rungs, when
summed to all orders, contribute a factor ¢/

[(x =x")% =A%), where

)\p=(277p.p)"1=1.82><10_33 cm. (10)

The singularity of the rung factor lies on a
hyperboloid at a distance A outside the Minkow-
ski light cone and implies noncausal propagation
relative to Minkowski space-time. This is neith-
er surprising nor alarming. When the metric |

T upzngzR d% + ,upzfd‘lx fd‘lx'glfz(x)gl/z(x') [

t _oy!

x[$A,g"*'g""' g

itself undergoes quantum fluctuations “real”
space-time is Minkowskian only in an averaged
sense.

These results suggest that 51 and 52 may be
well approximated by choosing each to be propor -
tional to i/(x =x')?[(x ~x)2 =xp?] or, equivalent-

ly, to
d

xp'z[
=ij:1Kx

The integral on the right of (11) gives concrete
expression to the old idea that quantum gravity
“smears” the light cone.®®™® A more complete
theory, which sums other graphs besides ladder
graphs, would presumably insert a smearing
function w(£) in the integrand.

Expressions (9) and (11) admit of immediate
generalization to an approximation for Z, and
hence for I', that is invariant under the full dif-
feomorphism group (the gauge group of gravity

A
T(x-x")

z
(x =x")%2=2rp

ag

-x)? = Exp%]% 7 (1

i i

o(e,x) =ixp2+i0 ~ o(x,x’) +i0

grélcpvor(x)coc'ﬂ' y’é’(x') -ilz_AzR(x)R(xl)]-

theory):

(12)

Here gis —det(g,,), g"° is the parallel displace-
ment bivector,? o{x,x’) is half the square of the
geodetic distance between x and x/,%° and Cuvor
and R are the Weyl tensor and curvature scalar

of the full nonlinear theory. A, and A, are num-
erical coefficients whose precise values depend
on the numbers and kinds of matter fields includ-
ed, but whose magnitudes are not vastly different
from unity. The 70 in the “propagators” specifies
how the poles are to be skirted in the double inte-
gral, and the other factors ¢ remind us that both
T and the effective field, which is an “in-out”
average, are generally complex valued.

Although expression (12) has been derived by
arguments starting from flat space-time, I pro-
pose that it be taken seriously even under condi-
tions of strong curvature (R, . = 4p°) and with
topologies other than ®*. Efforts are currently
under way to test it on compact Robertson-Walker
universes to see whether, under generic realis-
tic conditions, it will suppress the initial curva-
ture singularity. Among the properties of Robert-
son-Walker models that simplify this investiga-
tion is conformal flatness. The Weyl tensor dis-

[

appears from expression (12), taking with it the
parallel displacement bivectors, leaving o(x,x’)
as the only difficult geometrical quantity to com-
pute and A, as the only adjustable constant.
Expression (12), based as it is on a quadratic
approximation to Z that is determined solely by
the graviton propagator, cannot be expected to
yield accurate vertex functions (third functional
derivatives and higher). Nevertheless it is well
known®® that in regions of momentum space where
Z.(p? and Z,(p® are slowly varying, e.g., in the
ultrahigh-energy region |p?| > u,? (see below),
the vertex functions are fully determined by the
graviton propagator in virtue of the gauge-in-
variance condition (2). Therefore, if %, and z,
are well approximated by (11) then expression
(12) has the correct structure as x’— x and will
yield qualitatively correct dynamical behavior.
More accurate vertex functions at lower energies
could in principle be obtained by adding to expres-
sion (12) higher -multiple integrals in which the
curvature appears cubically, quartically, etc.,
along with factors involving g**" and o(x,x’).
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It is not difficult to verify that expression (12)
yields the graviton form factors Z(p?%) =A,F(p?),
% .(p%) =A,F(p?), where
mi Hl(z)(()tpzpz—i())l/z) _ 1
9 (Apzpz—i())l/z Apzpz_io .

(13)

F(p?)=-

The function F(p?) is complex for spacelike mo-
menta (and hence yields no tachyon ghosts) and
real for timelike momenta. In both cases it
damps to zero as |p?|~ <, It yields no timelike
ghosts provided A, and A, lie between -« and
1/(2m2. This may be regarded as a constraint
on the number and kinds of fields that nature will
permit in addition to the gravitational field.
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