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integer greater than 1. Then the resulting rota-
tion number is

w (a, M ) = w* (1+(- 1)"(w*)'""(a—1)

x (1+2w*)/[2+ (g —2)w*]j.

The corresponding critical value of k can be writ-
ten as k, (a,M) =k, (~) —e, where k, (~) is the crit-
ical coupling when M) =so*.

According to the numerical work of Shenker
and myself, ' as one progresses through cycles of
length q„ for n ~ M —1, the residues of the result-
ing cycles are, for small e, a function of &q„.
This suggests that e may be viewed as a scaling
field' which grows as s„-eq„-s(w*) ". Then at
n =M the kind of recursion changes since at that
step T„+,= (T„)s T„,. This then produces a
sudden and large change in the value of the scal-
ing field in this and the next few steps in itera-
tion. If a is of order unity, the scaling field will
change by an amount which also is of order unity.
But then as one goes on many more steps in iter-
ation T„must settle down to its original fixed
point behavior, hence showing a scaling field e„
=0 for n»M. If the change near step M is of or-
der unity, the value e„,-s(w*) ~ must also be a
number of order unity which depends on a. Hence,
we say e~,= ne (a) or

k, (a,M) =k, (~) —(w*) snes(a)

for M»l. Here ()s(a) is universal, but a is not.

This work was based upon a long and fruitful
collaborative effort with Scott J. Shenker, which
is in part reflected in our joint paper, ' but which
also includes many unpublished ideas which led
up to the present paper. I have also had useful
discussions with S. Aubry, J. Greene, M. Feigen-
baum, and M. Widom.
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The I — asymptotic properties of pz(g), the probability distribution of the classical
hopping conductivity gz corresponding to random one-dimensional systems of length &,
are determined. These properties are nonuniversal, and become anomalous if the proba-
bility density p(w) of the random near-neighbor hopping rates is such that f 0 dw p(w) w
does not exist. The associated quasilocalization effects are discussed and their experi-
mental observability is speculated upon.
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The transport properties of random one-dimen-
sional systems represent a. topic of high current
interest, and the theoretical as well as the experi-
mental situation is still quite controversial, in
particular with respect to localization effects.

For quantum systems, the zero-temperature re-
sistance is expected" to increase exponentially
with I., the length of the one-dimensional system,
reflecting exponential localization of the electron-
ic eigenstates. Analytical' ' and numerical' in-
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v((u) = (n, /eA; 8T)W, (g(ar)),

where

g(~) = —2 (o' Q n'P„(- i (u),

(2)

and where the P„represent the solution of the
Laplace transform of Eqs. (1), supplemented by
the initial condition P„(0)= 6„,. In Eq. (2}, n
denotes the density and e the charge of the hop-
ping particles, T is the temperature, and the lat-
tice constant is unity. W, denotes some represen-
tative hopping rate, so that g(&u) is a normalized

1644

vestigations, however, indicate that calculated
quantities such as resistance or conductance do
not obey a conventional law of large numbers,
i.e., their distributions become singular as I

In addition, the experimental situation with
respect to the observation of localization effects
in thin wires' is also rather confusing.

Analogous problems in classical disordered
one-dimensional systems have not yet been inves-
tigated, and it is the purpose of this paper to pre-
sent exact results for the asymptotic length de-
pendence of the dc conductivity in a simple model
for classical hopying-type transport. ' ' The mod-
el is based on a master equation description of
hopping transport on a one-dimensional lattice,

dP„/dt

=W„„,(P„,-P„)+W„„„(J„„-P„),
where n labels the lattice sites, and P„(t) is the
probability of finding a hopping particle at site n
at time t. The near-neighbor hopping rates,
W y TV y

~ 0, are assumed to be mutual ly in-
dependent random variables, distributed accord-
ing to a probability density p(w). In the following,
we shall show that this randomness can lead to
localization or quasilocalization effects which are
similar to (but qualitatively different from) those
observed in quantum mechanical one-dimensional
systems. Specifically, we shall determine and
analyze, for several representative classes of
p(w), the exact L —~ asymptotic form of the prob-
ability distribution p~ of the (normalized) dc hop-
ping conductivity g~ corresponding to a system of
finite length I..

Previous work on the above model' "has main-
ly concentrated on time- and frequency-dependent
properties of an infinite system described by Eqs.
(I), e.g. , on the behavior of the frequency-depen-
dent hopping conductivity o(&u). Via the fluctua-
tion-dissipation theorem, this can be expressed
as"

conductivity. In the following, the 8"„„„thus
represent normalized hopping rates (with respect
to W, ), and the average (. ..) is defined with re-
spect to the distribution of these (independent)
random variables. For three general classes of
probability densities p(w) (see below), the low-
frequency behavior of (g(e)) has been deter-
mined" via a general scaling hypothesis from
the exact asymptotic results for (P,(- i&a)). The
corresponding expressions" imply, in particu-
lar, that the dc conductivity (g(0)) is given by
(g(0)) = W,„&0 if p(w ) is such that W„'—= f,

"
dw

&& p(w)w ' & ~, and that (g(0)) =0 if W„' does not
exist. In the latter case, the ~ -0 asymptotic be-
havior of (g((u)) is anomalous and nonuniversal,
i.e., it depends explicitly on the analytic behavior
of p(w) near w =0.

Under the assumption of a specific (tempera-
ture-dependent) hopping-rate distribution, this
simple classical model has been shown" to lead
to a remarkably accurate and detailed description
of the peculiar frequency and temperature de-
pendence of the complex electrical conductivity
o'(&u, T) in the one-dimensional superionic conduc-
tor hollandite. Recently, the rather complicated
behavior of o'((u, T) in the quasi-one-dimensional
electronic conductor quinolinium ditetracyano-
quinodimethanide [Qn(TCNQ), ] has also been ana-
lyzed in terms of such a classical hopping- mo-

We now concentrate on finite systems, and on
the dc conductivity,

g~ = lim g~((s)}, (4)
Q

where L denotes the length of the system. To be
definite, we define g~(v) as the normalized con-
ductivity, given by Eq. (3), of an infinite system
that consists of periodical repetitions of any ar-
ray of L hopping rates (W„W„.. . , W~). It fol-
lows" that g~ then simply becomes

L
Z=LG=L(ZW ')' (5)

n=1

i.e., G~ can be regarded as the "equivalent con-
ductance" of L "conductances, " R"» W». . . , W~,
in series. For a given probability density p for
the hopping rates, let p~ denote the probability
density of the conductivity g~, and R~ that of the
conductance G~. Equation (5) implies that G~
=(G~, '+ W~ ') ', so that A~ satisfies the re
cursive integral equation

=Jo dx& - (y)I, «(&p)&(~-( y+~ ') '), (6)



VOLUME 47, +UMBER 2$ P HYSICAI. RKVIKW I, KTTKRS 7 DECEMBER 1981

p(w) = (1 —e)w "6(l —w), 0 & n & 1, (10)

finally, exhibit a power law singularity as se -0.
(6 denotes the Heaviside step function. )

For these three classes of hopping-rate distri-
butions it turns out that, asymptotically as L

p~(x) approaches a homogeneous function
representation,

p~(x) = Z~h(X~x),

where the scaling factor A.~ as well as the limit-
ing scaling function h(x) are functionals of p(w).
They can be determined rigorously, e.g. , by
inserting an Ansatz of the form R~(x) =Lk~f~(L
x A~x) into the recursive integral equation for
Rz, Eq. (6). The limiting integral equation for
h(x) = lim~ „f~(x) can then be solved by use of
methods similar to those described in the ap-

and our aim is to determine the behavior of p~(x)
=L 'R~(L 'x), and of corresponding averages, at
least asymptotically as L -~. In particular, we
shall explicitly discuss the average conductivity,

(g~) = Jo"dxp~(x)x, and the standard deviation,
&g, = ((g,'& —(g,&

')".
We first consider an ordered system, i.e., p(w)

=6(w- W). Then our problem becomes trivial,
and one has g~=R', independent of L. Percolation
systems, for which 5(w) =p5(w)+(1-p)5(w —W),
are also easily investigated, and for any finite L
one finds

p, (x) =(1-e "')6(x)+e "6(x-W),
where A-=—ln(1-P). It follows that (gg decreases
exponentially with increasing L, (g~) = W exp(- AL),
but also that the standard deviation decreases
slower than the mean, &gJ(g~) =exp(-, XL) as

Although the reason for the divergence of
Ag~/(g~) is rather trivial in the present case,
we may note that qualitatively similar observa-
tions are made in random quantum systems. ' '

We now turn to more interesting hopping-rate
distributions, and concentrate on the three gener-
al classes of probability densities p(w) that have
been considered' ' in the investigations of the
frequency-dependent properties of the model:
Class (a) consists of all p(w) for which

W,„'=—
Jo dw p(w)w ' & ~, (8)

i.e., p(w) either has a lower cutoff, or at least
goes to zero as w -0. Class (h) contains the p(w)
which remain finite as u -0,

p(w) —p, =const&0, as w -0.
Class (c) probability densities,

pendix of Ref. 8. It is also possible to determine
h(x) and A~ via a direct (nonrecursive) evalua-
tion of the Laplace transform of R~ in the limit
as L-~. We finally note that for class (c) dis-
tributions the form of Eq. (11), with the correct
scaling factor A. ~ =L ', is suggested by scal-
ing arguments similar to those used in Refs. 9
and 10. The rather involved mathematical de-
tails of a rigorous determination of A~ and h(x)
will be presented in a forthcoming publication,
and in the following we restrict ourselves to a
summary of the main explicit results.

For class (a) systems one obtains h(x) = 5(x —1)
and A~ = W,„', where W,„'[defined in Eq. (8)]
is independent of L. If (g~) and (g~') exist, "it
follows that

lim (gz, )= W», lim kg~=0. (12)

Asymptotically for large L, class (a) systems
therefore behave as an ordered system with an
average hopping rate 8'„.

In class (b) systems one stiU. has h(x) = 6(x -1),
but now A.~ = po lnL. This implies a logarithmic
decay of the average dc conductivity,

(g, & (p, inL) ', (13)

Class (c) systems exhibit an asymptotic behavior
which is intermediate between that of an ordered
system and that of percolation systems. We ob-
tain A. = L ' and

, h„(x) =yr(~) &a„"(r(~)~x~I-', ,'~, ),

y =1/(1 —~), (14)

where H~,
" denotes the so-called B function of

Fox,"a generalized hypergeometric function. It
follows that (g~) decreases according to a, power
law,

(g ) yI'(y)r(n) "L "~~' "~, L-
and that the standard deviation 4g~ becomes
proportional to (g~),

(16)lim bg~/(g~)=[y 'r(2y) Py) ' —1]' '.
L

Equation (16) reflects the fact that for class (c)
distributions the limiting scaling function h(x)
is not a delta function. For ~= —,', e.g. , we have
h, ~,

———,'x '~2exp(- —,'wx), and (g~) ~(2/n)L ' as L

If the inverse first moment, 8'» ', of the hop-
ping-rate distribution p(w) does not exist, the av-
erage dc hopping conductivity (g~) thus always
decays to zero with increasing sample length L,
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dimensional superionic conductors such as hol-
landite, whose anomalous transport properties
have successfully been analyzed" in terms of
our classical hopping model. The specific model
used in these investigations (thermally activated
hopping over random barriers, and an exponen-
tial distribution of the barrier heights) ' leads
to a class (c) probability density p(w), with a
temperature-dependent exponent o., a =1 —T/T
Our results [see Eq. (15)] would thus imply that
with increasing sample length L, the dc ionic
conductivity should decrease as

od (T L) =o(T)L ~ T(T
FIG. 1. Predicted dependence of the ionic dc con-

ductivity ad~ on sample length& for the one-dimensional
superionic conductor hollandite. The underlying model
assumptions are discussed in the text.

i.e., we observe interesting quasilocalization
effects in a classical one-dimensional system.
The asymptotic behavior of the conductivity dis-
tribution pi is, however, nonuniversal and quali-
tatively different for different classes of p(w).
For class (b) distributions (gi) decays logarith-
mically and limi Agi/(gz) =0, whereas in

. class (c) systems (gi) exhibits a, power law de-
cay and hagi/(gi) approaches a finite constant.
These results can be contrasted with the strong
localization effects in percolation systems,
where (g~) decreases exponentially and &gi/
(gi) increases with increasing L.

While most distributions p(w) of interest for
physical problems either belong to one of the
above classes or are of percolation type, it is
interesting to point out that there exist p(w)
which lead to even stronger localization effects
than the exponential ones obtained for percolation
systems. For example, if p(w) diverges as
w 'ilnwi "for w-0 (v)1), scaling arguments
indicate that (gi) should decay as (gi) —L '~~' "'

&&exp(-L ' ' ), but the asymptotic properties
of p~ seem to be very peculiar.

In conclusion, we have derived exact limit
theorems for the conductivity distribution v~
in classical one-dimensional model systems. In
contrast to quantum localization, which occurs
for any type of disorder, we observe classical
localization (or quasilocalization) effects only
if the near-neighbor hopping-rate distribution is
not of type class (a) [defined by Eq. (8) above].
It is therefore interesting to speculate whether
such effects could actually be observed in real
physical systems. The best candidates are one-

In Fig. 1 we display the predicted length depen-
dence of ad, at T = 300 K and T = 340 K for the
case of hollandite, where T ~450 K." To evalu-
ate &,(T), the remaining parameter values have
also been adopted from Ref. 11, where this ideal-
ized model has been shown to lead to a remark-
ably accurate description of the experimental re-
sults for o(~, T) over a wide frequency and tem-
perature range. We remark, however, that these
ac investigations" do not rule out, e.g., the pos-
sibility of a lower cutoff at some 8' in the
hopping-rate distribution p(w ). The associated
(L-independent) value for vd, would then prevent
an observation of its L dependence above some
critical length I, From Fig. 1 it follows that
at T = 300 K we can only expect to observe an L
dependence in samples of reasonable length (L
a1 mm) if the W . -induced od, threshold is be-
low about 10 "(0 cm) '. From the present ex-
perimental information, "however, we can only
deduce an upper bound of about 10 ' (Q cm ') for
Od, a,t T=300 K.
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A new gauge-invariant effective action is proposed for quantum gravity, based on older
results that go beyond finite-order perturbation theory. Expressed in coordinate space
rather than momentum space it should find important applications in theory of the early
univer se.
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Attempts to determine the dynamical behavior
of the universe in its early moments have hereto-
fore been based on the semiclassical approxima-
tion' ":One computes particle production and
vacuum polarization in a given time-varying
background metric, constructs an expectation
value (T"') for the stress tensor, and then ad-
justs the metric in such a way as to satisfy the
self-consjstency condition R""—zg""R = 8xG

&& (Ti' v)

The semiclassical method is a one-loop ap-
proximation to the full theory. " It unfortunately
suffers from ambiguity. Firstly, (T"") is not in-
variant under quantum field redefinitions that in-
volve the background metric'~; it can be made in-
variant only by including graviton loops. Second-
ly, (T"") must be regularized and renormalized.
Renormalization involves the subtraction of
terms that do not appear in the classical action
and hence cannot be absorbed in parameter re-
definitions. New arbitrary parameters make
their appearance.

The need for graviton loops reminds us that we
cannot study the early universe without quantiz-
ing the gravitational field itself. The appearance
of arbitrary parameters reflects the nonrenormal-
izability of quantum gravity and tells us that we
must go beyond one loop, indeed beyond finite-

order perturbation theory.
The chief theoretical tool for studying quantum

corrections to classical dynamical behavior is
the effective action. A new theory of the effective
action for gauge fields, including the gravitation-
al field, has recently been worked out to all or-
ders ' A set of computational rules exists
leading to an effective action of the form r =8+Z,
where both the classical action S and the quantum

correction Z are gauge invariant. I do not dis-
cuss these rules here, beyond remarking that in
Yang-Mills theory they greatly simplify the re-
normalization program, completely bypassing
BRS techniques. ' ' In this note I describe the
general structure of Z in gravity theory and sug-
gest an approximate form for it based on non-
perturbative results already obtained a number
of years ago.

The construction of Z requires the introduction
of gauge-breaking terms and ghost propagators
that are covariant upwith respect to the effective
rnetricg„„'"=(out)g„, )in)/(out)in). " The func-
tional form of Z is not independent of the choice
of these terms. However, the solutions of the ef-
fective field equation

6r OS 5Z
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