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In problems involving two-dimensional area-preserving maps, stochastic regions are
separated by continuous curves called Kolmogorov-Arnold-Moser trajectories. As the
mapping is changed continuously, these regions may fuse via the disappearance of the
intervening trajectories. Scaling arguments are presented to describe the behavior of

the curves near their disappearance.

PACS numbers: 02.10.+w

The behavior of a dynamical system may con-
veniently be studied by replacing the continuous
time evaluation by a discrete mapping in which
the coordinates at a point in the trajectory are
expressed as a function of the coordinates at an
earlier point. For a Hamiltonian system with two
degrees of freedom, the corresponding map ex-
presses new coordinates 7/, 6’ as a function of
old coordinates (7', 6’)=T(7, 6). The Hamiltonian,
and hence reversible, nature of the problem is
expressed by the condition that the Jacobian
a(r’, 0”)/8(7, 6) equals 1—so that areas in the
(7, 6) phase space are preserved.

The qualitative nature of flows in the Hamilto-
nian problem is reflected by the qualitative be-
havior of the corresponding mapping problem. In
both problems, Kolmogorov-Arnold-Moser (KAM)
trajectories''? serve as an important classifying
feature since no flow can cross the surface rep-
resented by this kind of trajectory. In the map-
ping context, a KAM trajectory is a continuous
curve in the #, 6 plane, say I', such that all points
on I" map into other points on I" and are each the
result of the application of the map 7' to some
other point on I'. Such a KAM trajectory can di-
vide the 7, 6 plane into noncommunicating pieces,

i.e., into discrete areas from which a point can-
not escape under application of the map 7. Cor-
respondingly, the continuous-time system de-
scribes a motion in which a particle remains for-
ever trapped in a given region of phase space.

Often, as a parameter in the Hamiltonian (say
k) is changed, discrete trapping regions can
merge together —thereby qualitatively changing
the nature of the long-term motion. For this
change to occur, the intervening KAM trajectory
must somehow disappear or dissolve at some
critical value of the parameter, 2,. This Letter
reports some recent work on the mechanism by
which this dissolution occurs.

Focus on the particular case in which 6 has the
meaning of an angle divided by 27 so that (7, 6)
and (7, 6+ 1) are identical. Different points on the
KAM curve are distinguished by a “time” param-
eter ¢, so that the curve may be written as z(¢)
=(7(¢), 6(¢)). In the particular case in which the
curve wraps around the origin, we can consider
#(t) and 6(t) -t to be periodic functions of ¢ with
period 1. The Moser twist theorem! is then the
statement that for a large class of 7’s one can
choose 7(¢) and 6(¢) to be analytic functions of .
From this theorem, the effect of the map is sim-
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ply to advance the “time” by an amount, w, called
the rotation number. In symbols

z(t+w)=T(z(t)). (1)

For z(t) to be a continuous curve, w must be ir-
rational.

As k passes through k_, the KAM curve z(t)
dissolves. Precisely at & it still exists but is no
longer smooth.® (For each w there is a different
k,.) The task of this note is to describe the na-
ture of the bumps which appear in z(¢).

For specificity, focus® upon a particular value
of w, namely the inverse of the golden mean, w*
=(52~1)/2. Then there exist two sequences of
integers q,,p,,n=0,1,2..., such that w*q, -p,
=(=1)"(w*)"" =7, is a geometrically decreasing
sequence.? For this reason the application of the
map T to z(t) g, times produces a new point on
the curve very close to the old one:

T (2(t)) =2(t+1,). (2)

Here g, and p, are respectively given by Fibonac-
ci numbers F, and F,., where F,=F, =1 and
F,.,=F,+F, . Because of this addition property
T,= T obeys a functional recursion relation:

Tn+1(z): Tn(Tn-1(z))- (3)

In other papers®® we studied T, most specifi-
cally for the case in which 7 was the “standard
map”: T(r, 0)=(r’, 6’) with »'=7 - (k/27) sin270,
6’=6+7’. Shenker and I concluded that the re-
cursion relation (3) had a “scaling” solution for
6 close to 0 or 3. Interms of variables 6 and
u=7 - F(6) (where F is an a priori unknown but
smooth function of 6) one can represent the re-
sult of g, steps of the mapping T upon u, 6 by
writing #’=T,%(4, 6), 0’=T,%u, 6). For k=k,,
large », and small # and 6, our results suggest
the scaling laws

T, *(u, 6)=B," "T, *uB,", 6a,"),

4
Tn G(u, 9)=ﬁo-nT9*(uBo"’ Gaon)- ( )

The universal functions 7,* and Ty* then describe
the behavior near the dominant symmetry line? at
6=0. Here o, and B, are universal scaling con-
stants given by a,=-1.41485£0.00003, B,
=-3.06686 £0.00003. Notice the similarity of

the formulation to that of Feigenbaum.® For the
KAM curve 6(f), u(t), Eq. (4) implies that for
large n» and small ¢

By"u(t+ 7,)= T, * (B ul(t), a," 6(2)),

(5)
a"0(t+ 7,) = Te*(B,"u(t), a,"6(2)),
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where by definition 6(0)=0. To satisfy Eq. (5) for
all », make a scaling assertion:

a,"6(t)=6,x(t/T,),
B,"u(t) =uy*(t/B,),

for small ¢. Here the universal functions 6,* and
u,* obey

U (t+1) = T, * (ug*(2), 6,*(1)),

(6)

(7
0¥ (E+1) = T g*(u*(t), 6,*(¢)).
The scaling hypothesis, Eq. (6), then implies
that
0,%(t) = | £ |*08(log,,| t | ) sgnt, )

u*(t) = [*°U(log, |t |),

where x,= |log,a,|™, ¥,=|log,B|™!, and ©,(x) is
periodic with period 1 while Uy(x+1)=— Uy(x).
Equation (8) is then a scaling statement for the
KAM curve near 6=0 in which x, and y, determine
the nature of the singularity at one point in this
curve,

A similar behavior occurs near 6 =%, i.e., near
t=%. In this region a modified form of Eq. (4)
holds with different scaling indices, a,=- 1.69225
+0.00008 and 3,=-2.56420+0,00001. The ana-
logs of T,* and T g* were observed in Refs. 4 and
5 to depend upon % but to be periodic in » with pe-
riod 3. Thus, for ¢ near 3 Eq. (8) is replaced by
a similar statement for scaling functions:

a,"0(t —3)=6,*(t/7,),

B "u(t - 3) :ul*(t/Tn ),
so that Eq. (8) holds once more with subscript 0
replaced by 1. Now ©,(x) and U,(x) are respec-
tively even and odd under x —x + 3.

The analysis given here can be extended to oth-
er values of the rotation number. Let q,,q,,p,
=1and p,=0 as before. However, following, for

example, Greene,® generalize the recursion rela-
tion for ¢, and p, to the statements

©)

qn+1 zanqn +qn- 1>

Dne1=@nlntDp-1

where the a, are positive integers. Let w be the
n - limit of p,/q,. Just so long as a,=1 for
sufficiently large » (i.e., »>M), then the large-n
behavior is still determined by the recursion re-
lation (3) and if » is chosen to be the critical val-
ue for that w, i.e., k= k,(w), the critical behav-
ior is probably exactly the same as for w =w*.

One can also infer some of the dependence of
k,w) uponw. Leta,=1forn+M>1, a,=a, an
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integer greater than 1. Then the resulting rota-
tion number is :

w@,M)=w*{1+ (= D)*Go*)*4*G - 1)
X (L+2w*)/[2 + @ -2)w*]}.

The corresponding critical value of 2 can be writ-
ten as k. (a,M)=k,(x) - €, where k() is the crit-
ical coupling when w =w*.

According to the numerical work of Shenker
and myself,’ as one progresses through cycles of
length ¢, for n< M - 1, the residues of the result-
ing cycles are, for small €, a function of €q,.
This suggests that € may be viewed as a scaling
field® which grows as €,~€q,~€w*) ", Then at
n=M the kind of recursion changes since at that
step Ty..= (T )% T,.,. This then produces a
sudden and large change in the value of the scal-
ing field in this and the next few steps in itera-
tion. If g is of order unity, the scaling field will
change by an amount which also is of order unity.
But then as one goes on many more steps in iter-
ation T, must settle down to its original fixed
point behavior, hence showing a scaling field €,
=0 for n>M. If the change near step M is of or-
der unity, the value €,._,~€@*) ¥ must also be a
number of order unity which depends on a. Hence,

we say €,.,=a€(a) or
ko (@,M)=ky(x) = *) Yade (@) (11)

for M >>1. Here 6€(a) is universal, but @ is not.

This work was based upon a long and fruitful
collaborative effort with Scott J. Shenker, which
is in part reflected in our joint paper,® but which
also includes many unpublished ideas which led
up to the present paper. I have also had useful
discussions with S. Aubry, J. Greene, M. Feigen-
baum, and M. Widom.
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The L — = asymptotic properties of p,(g), the probability distribution of the classical
hopping conductivity g, corresponding to random one-dimensional systems of length L,
are determined. These properties are nonuniversal, and become anomalous if the proba-

bility density p@) of the random near-neighbor hopping rates is such that J ;" dw pw)w”

1

does not exist. The associated quasilocalization effects are discussed and their experi-

mental observability is speculated upon.

PACS numbers: 05.60.+w, 05.40.+j, 66.30.Dn, 72.15.Cz

The transport properties of random one-dimen-
sional systems represent a topic of high current
interest, and the theoretical as well as the experi-
mental situation is still quite controversial, in
particular with respect to localization effects.
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For quantum systems, the zero-temperature re-
sistance is expected’:? to increase exponentially
with L, the length of the one-dimensional system,
reflecting exponential localization of the electron-
ic eigenstates. Analytical?™* and numerical® in-

1643



