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matter with different binding character which sug-
gests a similar behavior with regard to propaga-
tion and relaxation of defect charges as well as
to the subsequent explosion.
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The first exact solution of the time-dependent Debye-Smoluchowski equation for dif-
fusional drift under a general interaction in the presence of a reactive sink is presented.
Associated time-dependent rates of chemical reactions in a dense gas are formulated
and display the basic physical transition from reaction control to transport control as
time progresses for a system initially in Boltzmann equilibrium.

PACS numbers: 34.10.+x, 51.10.+y, 82.30.-b, 87.15.-v

The number density n (R, t) at time t of some
species A (e.g. , negative ions) drifting under
interaction V(R) across a, sphere of radius R
towards a central species B (positive ion) in a
gas Z (or liquid) under the action of a reactive
spherical sink of extent S from B is governed by
the generalized Debye-Smoluchowski equation,

dn (R, t) sn (R, t) R 2 8 (R2.(R t))dt ~t ~A

= r, n-(R, t)e(R —S).

Here I; is the speed of reaction (via ion-pair-
gas collisions) for ions after being brought to S

by the net inward diffusional-drift current,

j(R, t) =D exp —n(R, t) exp
-V V

in terms of the diffusion coefficient D (cm' s ')
f'or relative diff'usion of A and B in Z.

The number density N; of all ion pairs AB with
internal separation R =S then decays at a rate,

4~R'N'n (R, t)dRdN, . d
dt dt

4nFs,2n (S, t)N'= o(t)N'N
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R = (f„exp[V(R)/kT]R 'dR]

dR/dR = (R/R )' exp(V/k T ), (6)

which is not without its physical significance. It
is related' to the probability that an R-ion pair
will further contract by diffusion under V, in
the presence of an instantaneous sink at S. Let,

where E„ is the rate (s ') of generation of nega-
tive ions at infinity, and where n is the time-
dependent rate (cm' s ') of recombination approp-
riate to asymptotic ion densities N'. If the ion
current approaching S is absorbed by reaction
within S, then lim, ,j(S—e, t) —0. In steady
state, the rate 4&R'j(R, t) from (1) is constant
for P ~ 5+ e and equals the production rate I „
in (3).

Equation (1) automatically incorporates the
boundary condition

r, n (S, t) = lim j(S+e, t)
E ~Q

which follows on integration of (1) between S+ c
and which equates the transported and absorbed
currents at the boundary. At asymptotic R the
correct solution of (1) tends to the Boltzmann
distribution.

n-(R -, t) =N exp(-V/kT) .
Equation (1) is of basic significance not only to

ion-ion recombination in gases' and ionic solu-
tions but also to chemical reactions in a dense
medium, to coagulation of colloids, to medical
radiology, to diffusion and field controlled reac-
tions in metabolizing systems (as enzyme-sub-
strate reactions in a celP), and to diffusion
across a membrane. While an exact time-depen-
dent solution to (1) can be obtained' for the field-
free (V=O) case, no exact solution has yet been
determined for general V although a large body
of literature exists on various approximate tech-
niques' for the Coulomb case. We provide here
the first analytical exact solution of (1) for gen-
eral V(R), subject to the condition that n (R, t = 0)
is prepared as the Boltzmann distribution (5).

The following exact solution is based on the
novel transformation from R to the variable

cient (cm' s ') is

D=D( ) (9)

This can be now solved by the method of Laplace
transformation which automatically incorporates
the initial condition. The full solution of (1) ap-
propriate to spontaneous reaction [ r, —~ in (4)]
is then, after some analysis,

n~s&(R, t)

The associated recombination rate is then

n(s)(t) 4~sfz(S t)/N

(12)

S' exp[- V(S)/k T]
TRNS S(~Dt)&2

which tends at long time t»S'/D to the steady-
state transport rate

+ TRN s = 4&s D =4&DR, /P(S), (i4)
where the natural unit of length R, is (e'/k T) and
where

P(S) =R, /S=R, f exp(V/kT)R 'dR.

Under condition of equilibrium with the field, the
Einstein relation (DR, =Ke) between D and the
mobility K is valid. For a Coulombic attraction,
the steady-state solution (14) is then

o.' ~RN s' = 4&Ke/[1 —exp(-R, /S) ] (16)

in accord with that of Bates. 4

The boundary condition (4) for finite reaction
under a field is,

r, (s)n (s, t)

The form of this equation is, in the transformed
R representation, identical with that for the field-
free case in the original A representation. Ac-
cordingly, introduce scaled quantities,

r =(R/S) -1, 7 =Dt/S', n'=(R/S)n„(R, t) (10)

such that (8) reduces to

&n'(r, T)/&7 = +n'(r, T)/sr '.

n„(R, t) =n (R, t) exp(V/kT)

such that (1) with (6) reduces to

sn„(R, t) D s, sn„(R, t)
Bg g 8+ Bg

(7)

(8)

v(s) e- V=Dexp — —n(R, t) exp —— (17)kT ~R kT

which yields, in the transformed representation
(6),

subject to (4). The transformed diffusion coeffi-
D dn„n, (s, t)=-
( )

(18)
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where the transformed speed of reaction is

r, = r, (dR/dR) . (19)

Hence, the full time-dependent solution obtained from Laplace transformation of (11) subject to the
initial Boltzmann distribution is, for a general interaction, given by

o.
n (R, t) =N exp(-V/kT) 1+ = {exp(2Q X) expX2 erfc(X+0) -erfcQj

nL, R

Here the associated quantities are defined as

X(t) =(1+o,/~ )(Dt)' '/S,

n(t) =(R S)/-2(Dt)",

and

CR = 5S5~ /( QS + Ck ~ ) P

in terms of the transformed reaction and transport rates,

~, =4~S'r, ~ =4~SD.

The ratio of these rates is, however, unchanged and given by

~5 4mS'r, exp[-V(S)/kT] nRcTN
r

& TRNS & TRNS

(20a)

(20b)

(20c)

(20d)

(20e)

Here o RcTN denotes the reaction rate which from (3) is the recombination rate that would pertain
provided a Boltzmann distribution of ions were maintained as at low gas densities when j in (2) vanish-
es. The full time-dependent recombination rate is now given by (20a) in (2) as

~(t) =«S'r. ~ (S, t)/& = ~-[1+(~RcTN/~ TRNs) expX'er«X]

where Q(R =S) in (20c) vanishes, X in (20b) is, with the aid of (6), (9), and (21),

X=(l+o.RcTN/o. TRNs)[(Dt)'~'/S]exp[V(S)/kT][S J exp(V/kT)R 'dR] ',
and where

o RCTN nTRNS/(+ RC'TN+ + TRNS)

(22a)

(22b)

(22c)

is the steady-state rate of recombination which is controlled by the rate limiting step of reaction ver-
sus transport and which exhibits a form' characteristic of physical mechanisms in series. At high gas
densities N, a TRNS«&RCTNsuch that n„-&TRNS the transport rate. At low N~ &TRNS~~&RcTN such
that a„-n RcTN. As t increases from zero, then

exp X erfc X-& — X+X — X + -.2 2, 4
3 7T

(23)

such that

nn(t-0) =uRcTN 1- exp[ V(S)/kT]f S) exp(V/kT)R 'drj
+ TRNS 8 J

decreases initially from the reaction rate o. «TN. As t —,
1 1 3

exp )p er) c ))- )-,+, )x«2x 4x

such that the long-time dependence is

a( )=)a I) +
( p, [5f exp(p/pT)R d)))I

a„Sexp[ V(S)/kT]-
O TRNS

which tends eventually to the steady-state rate n„ for t»(S'/D).

(24)

(26}

(26)
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The ion density (20a) tends to the steady-state limit

n (R, t —~) =N exp(-V/kT) 1— P(R)
+TR N S +(S (27)

which at low N is approximately Boltzmann but departs appreciably from Boltzmann at high N (o.„
"o.TRNs) particularly in the region of the sink.

The full time dependence in (22a) for a is contained in (22b) for g which, for a pure Coulomb attrac-
tion, varies as

(28)

where the scaled time is

T = f/(S'/D) (29)
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FIG. 1. Explicit time dependence of recombination
rate n (t) at various gas densities, as indicated in units
of Loschmidt's number Nl (2.69&& 10' cm at STP).
Characteristic times .(S2/D) for diffusion are also in-
dicated.
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in the units of (S'/D), the time approximately re-
quired for an ion to diffuse from the boundary to
the center of the sink.

In Fig. 1 the time dependence is illustrated for
the recombination rates n(t) resulting from (22)
for various gas densities N (in units of Ni, the
number density 2.69 &&10" cm ' at STP). The
transport rate o. TRNs is given by (14) and the re-
action rate aRcTN for a, fictitious (but representa-
tive) case of ions of equal mass (16 amu) and
mobility 2 cm'/V s recombining in an equal
mass gas at 300'K is obtained from a model"
which yields the exact quasiequilibrium rates'
at low N.

For high N, o.(t) decreases initially from
+ RcTN which is» &rRNs~ to its steady-state
limit which is n T»s, i.e., for the assumed ini-
tial Boltzmann distribution, reaction first occurs
spontaneously for the ions within S and then ion

I transport is initiated in an attempt to compensate
for the resulting hole in the distribution. For
low N & Nz (-=1 atm), a. linear variation of o.(t)
with t is exhibited since the reaction rate +Re&N
«a YRN~ is always the rate limiting step. Thus
the transition from reaction to transport is best
observed for dense gases. Also shown in Fig. 1
are the characteristic time scales (S'/D) for dif-
fusion across a sink of radius S which is com-
pressible with 1V. This effect could therefore be
detected by modern laser spectroscopic tech-
niques based on rotational or vibrational transi-
tions in molecular ions. The steady-state rates
are of course independent of the initial condition.

In summary, we have presented here the first
exact closed-form analytical solution of the gen-
eralized Debye-Smoluchowski equation for diffu-
sional drift in the presence of a reactive sink or
source. The evolution of the rate of the overall
process for an initial Boltzmann distribution ex-
hibits the interesting phenomenon of control by
reaction to control by transport, and illustrates
the competition between these basic physical
mechanisms as time progresses. This phenom-
enon is directly important to many areas as
fluorescence quenching in solutions and in the
disappearance rate of ionization tracks.
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