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It is shown that the ESR modes observed in Cu:Mn alloys can be explained in terms of
an Edwards-Anderson-type theory for a spin-glass when an anisotropy energy is includ-
ed. Unlike other theories, the present one involves the conventional form for this anisot-

ropy, Uz = &sin 0, where 0 is the angle the local microscopic magnetization makes with

the symmetry rather than equilibrium direction. The present theory is distirguished by

a predicted, but as yet unobserved, angular dependence of single-crystal samples
with axial symmetry.

PACS numbers: 75.30.Hx, 76.30.Fc

&u =y (Hc +H, ). (2)

This formula corresponds to an antiferromagnet
with the applied field perpendicular to the sub-
lattice magnetization. '

The fact that low-field experiments correspond
to (1) rather than (2) has led Saslow' and Schultz
et al. ' to propose theories in which H, arises
from an anisotropy energy, U~(0) =csin'8. How-

ever, in both of these theories the anisotropy
energy is of an unconventional form. Usually the
angle 8 is that between the local microscopic
magnetization and the crystalline direction cor-
responding to a. symmetry axis. In the above
theories this angle is redefined as being (the
equivalent of) the angle between the magnetiza-
tion and its equilibrium direction. While the sym-
metry axis» the equilibrium direction in an anti-
ferromagnet, it is not so for the spin-glass. As
was appreciated by Schultz et al. ,

' the justifica-
tion for this form of the anisotropy energy is far
from obvious.

The purpose of this Letter is to show that a

Experimentally, "it has been found that spin-
glasses, below their cusp temperature T~, ex-
hibit a zero-field ESR signal. For small mag-
netic fields, the resonance condition is given by
the linear relationship

(u = y(aHo+H, ),
where H, is the applied static field and the con-
stant a ~ 1. For zero-field-cooled samples a = —,

'
while for those cooled in a large field a =1. The
additional field H, is a property of the system;
it decreases with increasing temperature going
to zero at or about T~.

The original measurements, by Owen et al. ,
'

on Cu: Mn were consistent with the resonance
condition

relatively simple antiferromagnetic model for
the ESR in a spin-glass follows from the inclu-
sion of the conventional form of the anisotropy
energy in an Edwards-Anderson'-type theory for
a spin-glass. Specifically it is assumed that be-
low T~ each spin sees a frozen local field which
is oriented at random and determined by an order
parameter q. Further comments upon this as-
sumption are to be found at the end of the com-
munication. In addition it is shown for a cubic
system that an ESR signal will appear at a field
given by the resonance condition (1). However,
for a single crystal with axial symmetry, the
present theory predicts an angular dependence
of the resonance condition which might be used
to distinguish between the two proposed forms for
the anisotropy energy.

Although the picture is still far from clear,
recent measurements have cast considerable
light on the origin of the anisotropy energy in
Cu:Mn"'; it is a function of the magnetic ion
concentration and increases very rapidly with
the addition of heavy nonmagnetic impurities.
Fert and Levy' have proposed a three-site Dzya-
liskinsky-Moryia mechanism to explain these
observations. In the present work, we accept
the existence of an anisotropy energy without ex-
plaining its origin. Initially we consider axial
symmetry, which is simplest, but later the re-
sults will be generalized to cubic symmetry more
relevant to Cu:Mn.

The importance of zero- or small-field ESR in
spin-glasses has perhaps not been fully appre-
ciated. In analogy with conventional antiferro-
magnets, careful measurements of the H, carl
help to determine whether or not a phase transi-
tion occurs at T~. In the paramagnetic phase,
well above T~, anisotropy effects are negligible
for Cu:Mn; therefore, in general, H, =H,(T)-
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=H—,(q), such that H, (q=O) =0, where q is the
Edwards-Anderson (or equivalent)' order param-
eter.

The calculations reported here imply that B,'
~q. Hence (zero-field) measurements of H,
amount to a direct measurement of the order pa-
rameter q. As with a conventional antiferromag-
net, scaling behavior near T~ should arise be-
cause of critical fluctuations. On the other hand,
in a cluster model, "a local H, would form with
the clusters and H, (T) should vary more or less
smoothly through T~.

Measurements of H, are important for another
reason. Given that ESR detects the zero-wave-
vector limit of the spin-wave spectrum, there is
a gap of order yH, in the low-energy spin-wave
excitations of a spin-glass. As noted by Walker
and Walstedt, "this gap has repercussions upon
the low-temperature specific heat. The meas-
ured gap is quite large, e.g. , it is found for IOQ
CuMn that H, - —,'K.

The present calculation, in one sense, is less
than complete; while it does yield the correct
equations of motion for the macroscopic magnet-
ization, it leaves the key parameter H, undeter-

mined. Anticipating criticism of such an ap-
proach, we have also used standard methods"
to adapt the Edwards-Anderson' microscopic
spin-wave theory to three dimensions and ESR.
We have diagonalized (a part of) the microscopic
Hamiltonian using the Holstein-Primakoff" and
Bogoliubov" transformations. The results of
this very lengthy and much less transparent cal-
culation will be reported elsewhere. They are
in agreement with those derived here but, being
restricted to zero temperature, are less general.
This second calculation is used here as a justifi-
cation for what might otherwise seem an intuitive
development and to provide a precise value for
H, .

In the Edwards-Anderson theory, ' below T~,
each spin tends to align along a randomly orient-
ed but static internal field Hz,. ——P,.„,A, , M, ,
where A. ;,. =4;, /y . Consider initially a uniaxial
crystal and take the a direction as the symmetry
axis. The effect of a uniform U~=Ksin'6I, for
small deviations from equilibrium, will be a dis-
ordered effective anisotropy field H~i " With a
static magnetic field H, in the z direction, the
equation of motion for the transverse magnetiza-
tion M;' of the ith spin will be

dM, '/dt= —.iy [(H, +H„,'+ Q Z, ,M. ,')M, '+M,.' Q X. ,,M,. 'j.
The spins can be divided into those with B~ and Ij„,-' both positive or negative. The equations of

motion for the average transverse magnetizations M, ' and M, ' for these two subsets can be written as
follows:

dM, '/dt = -i@[(H,+AM, '+H„)M, ' —AM, 'M, '] —i @Hag„a„M„', (4a.)

dM2 /dt = -i@[(H +A0M,
' -H~}M, -AM2'M, j+i yH~+„a„M„", (4b)

where (initially} H„' is the average of the z com-
ponent of the effective anisotropy field for a given
subset.

The effective exchange constant A. is the average
of A. „.taken for spin pairs one of which belongs to
each subset. This is automatically negative and
is distinct from the simple average of A, , which
is small and here assumed zero.

The coordinates I„'correspond to the other k
g 0 modes of the system. These will typically
have associated energies E„-(J;,')' ' and coupling
coefficients a„-N ' '; N is the number of spins.
If H„=O then Eqs. (4) must add and all exchange
fields cancel; this explains the different signs of
the ill-defined M„ term in Eqs. (4). Notice that,
because of the random nature of the spin orienta-

I tion, for a zero-field-cooled sample, the aver-
ages of both the anisotropy and the exchange
fields lie along the symmetry axis.

If the M„ terms could be ignored, Eqs. (4) are
identical to those for a conventional antiferro-
magnet. A priori this will not be the case if H„
is taken simply to be the average of H„; how-
ever, H~ and a„are dependent variables and
there will exist a value of B„-B~for which the
I„terms give no net perturbation. " In addition
to the sketchy pr oof of this given in footnote 14,
this approach is ultimately justified by agree-
ment with the more detailed calculations men-
tioned above.

The roots of Eqs. (4), dropping the M„' terms,
and with the static field parallel to the easy axis,
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M=y[ao+aA(M, +M2 )]+([~a%(Mx +M2 )] +H~[a~+p(M -M )J) ~ .
Now M, '+M, '= g„a, +M„, where M~ is the residual magnetization and gi, the parallel susceptibility.
The exchange field 2as =A(M, ' —M, ') and as usual' pi= i Xi

' can be used to eliminate the molecular-
field constant. The result is

(u =y[(l ——,'n)a, +a.], (7)

the same as (1) with a=1-2u=1 ——,'(g, i/gi).
The detailed zero-temperature spin-wave theory

gave H, '=(2i J, iK/S')((S, ')- (S,')), where the
angular brackets indicate an average for differ-
ent spins in the equilibrium configuration. For
a, strictly isotropic spin-glass (S,') —(S,')-K/
i J, i, whence H, -K. Since both H„and He are
expected to be proportional to q' it follows that
H, '~q, i.e., the zero-field resonance frequency
is directly related to the order parameter, as-
suming of course that such a parameter exists.

It is well known' that the root (7) depends upon
the angle the field makes with the crystal axes.
The general solution reduces to

a) = y f H, + (1 —2 n)HO cos cp] (8)

provided H, «H, and y, the angle the field makes
with the easy axis, is not very close to m/2. Only
if 8H, 2(2- n)2cos2p &H02 does one obtain the cele-
brated roots given by (2). (Notice that the n
factors drop out and that there is also a longi-
tudinal mode' cu/y =a, independent of the field
a,.)

For cubic symmetry, relevant to Cu:Mn and

other current ESR experiments, there are three
equivalent symmetry axes. If the coordinate axes
are chosen to coincide with the crystal axes then
it is clear on symmetry grounds alone that the
equations of motion for the three components of
the magnetization must be equivalent, at least
in the absence of an external field. Since the
equations of the theory are also linear they are
invariant to rotations of the coordinate axes.
Thus in the presence of a sm&ll external static
field H, the z axis can be rotated to coincide with
the direction of the field, and hence the antiferro-
magnetic model in general and Eq. (6) in particu-
lar are valid for an arbitrary field direction rela-
tive to the crystal axes; i.e., for a cubic system
the ESR is isotropic. The microscopic spin-wave
calculation confirms these conclusions. Given

((u/y) =(1 ——,'u)a, + —,'ZM„+ [(-,'ZM ——,'ua, )'+H ']
where u = y,i/yi and a, =(2H~H„)'i'. For low
fields (n/2)H, &H„ if M„=O, and taking the upper
sign, this simplifies to

(6)

m = y(HO+H, ),

a, =a, '/~M, .

(9a)

(9b)

The effective anisotropy field H, -1/M„, as ob-
served. ' Notice that the ratio u has dropped out
of (9a); thus the constant a in (1) will be close
to unity, also in agreement with experiment. '
Since —,'nH and —,'A.M~ may either add or subtract
in (6) this formula is also consistent with the
peculiar macroscopic anisotropy' relative to the
direction of M~.

Of course, the key questions which remain to
be answered experimentally are whether the de-
pendence B,'~q ean be confirmed, lending sup-
port to the hypothesis of a phase transition at T~,
and whether the anisotropy is referred to the
crystal or equilibrium direction, i.e., whether
the angular dependence predicted by (8) will be
observed for single-crystal samples of axial
symmetry in small fields. Good candidates
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that the anisotropy is of the Dzyaliskinsky-Moryia
form' the dependence H, ~ q' ' is still implied.
A single-ion anisotropy would imply B,~ q. In
either case H, is still directly related to the ord-
er parameter q.

Equation (6) would appear to explain the observa-
tions to date. " This equation is identical to that
derived by Schultz et al. ' on a phenomenological
basis using the unconventional form for the anisot-
ropy energy. It corresponds well to their zero-
field-cooled experiments with M„=O and u = I,
i.e., it is implied that X i~

= Xi, the result expect-
ed for an isotropic spin-glass. As for orders of
magnitude, the observed H, -3 kG is much larger
than known single-ion anisotropy fields. The ob-
served concentration dependence and magnitude
of H, imply that the multi-ion Dzyaliskinsky-
Moryia contribution' is of importance. The ex-
periments of Monod and Berthier' and some of
those of Schultz et al. ' were samples cooled
through Tc in a large field H„„(-1-7kG). In
such a case one would expect —,'AM~- ~nB „,i,
and the condition (2AM~)')H, ' may apply. The
interesting root of (6) reduces to
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might be Zn:Mn or Mg:Mn.
Finally it is relevant to comment on the time

scale of an ESR experiment. The assumption
that H~,. is not a function of time and therefore
that the order parameter q is well defined is not
essential to the above derivation. If the average
magnitude of H~; over all spins is a constant and
if the direction of H~, changes slowly on the time
scale of the experiment (say 10 '-10 "sec}then
our results are unchanged. Thus ESR can con-
firm, or not, the existence of an order parameter
only upon this rather short time scale.

The author acknowledges informative discus-
sions with Professor M. Hardiman, Professor
S. Schultz, and Professor D. R. Fredkin and the
hospitality of Professor R. Orbach and his group
at the University of California, Los Angeles. Re-
cently K. %'. Becker has derived similar results
to those given here. " There appear, however,
to be significant differences between his and the
present results.
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