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Upper-Hybrid Wave Collapse
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It is shown that the upper hybrid mode can collapse into thin magoetic-field-aligned
filaments as a resuIt of coupling to the electrostatic ion-cyclotron mode.

PACS numbers: 52.40.Mj, 52.35.py

Recent experimental work on large-amplitude
beam-driven instabilities' has shown that both
the oblique electron-plasma and the electron-
cyclotron modes can collapse into thin magnetic-
field-aligned filaments which are confined to the
axis of the plasma column. Both types of insta-
bility exhibited a quasiperiodic burstlike behav-
ior with multiple modulation time scales charac-
teristic of low-frequency electron, ion-acoustic,
and ion-cyclotron waves. Furthermore, in the
latter case, correlation measurements were pos-
sible which showed that the amplitude modulations
on the pump wave were strongly correlated with
low-frequency density depletions.

Existing theoretical vrork on plasma-wave col-
lapse deals largely with the case of an unmagnet-
ized plasma" and is not directly applicable to
the results of Ref. 1. In this Letter, I discuss a
special case of wave collapse in a magnetized
plasma which explains the filamentary collapse
described in Ref. 1. The assumption which is in-
troduced to simplify the calculation is the neglect
of the spatial variation of the collapsed structures
along the magnetic field. This is the special
case of the collapse of the upper hybrid mode due
to the coupling to the ion-cyclotron mode.

Apart from its intrinsic interest, this problem
is considered to be relevant to the results of Ref.
1 because the collapsed structures were observed
to be cigarlike regions having their major axes
aligned with the magnetic field. This suggests
that the present results would be applicable across

~
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transverse sections near the center of the major
axis of a collapsed region, inasmuch as one can
regard the approximation as equivalent to neglect-
ing end effects.

Following Ref. 4 we split the wave motion into
its fast and slow parts. Consider first the fast
motion. The fast electrostatic potential, yf ls
related to the fast electron density perturbation,
n&, by Poisson's equation:

8, n~+n, (a„u + 8, v) = —8„(n,u) —8,(n, v). (3)

A stream function (~ and a velocity potential q
are now introduced so that

u=a„cp+8, $ and@ =B,y —B„g.

Then (1), (2), and (4) yield

(4)

(5)

where 6 =8„'+8,', x and y being the coordinates
perpendicular to the magnetic field B. The com-
ponents of the fast electron flow across 8, v&

= (u, v), are given by the linearized electron
equations of motion:

B,u =- (a'/n, )a„n& + (e/m )B„rt—0,v,
a, e = —(a'/n, )a, nt+ (e/m)a„gt+fl, u,

a being the electron thermal velocity, 0, the
electron gyrofrequency, and no the equilibri-
um density.

Next, as in. previous work, ' 4 the effect of the
slow density perturbation n, is retained in the
electron continuity equation for nz, giving

where ~„H and &u~ denote the upper-hybrid and plasma frequencies, while from (3) and (4) we get

8, nt + n,ap = —[div(n, v p) + {8,ga„—a„qa, )n, ] .
To lowest order on the fast time scale, we can neglect a'6 compared to co~' on the right-hand side of

{5).' ' Equations (5) and (5) then yield

(8,'+(u„H' —a'a)a(p = —((u, '/n, )[div(n, Vy)+ (B,qa„- a„qa,)n, ]

Let us now remove the fast variation at u&« from (7) by introducing slowly varying amplitudes de-
fined by

(cp, g) = [(4,4) exp(-iar „„t)+ c.c.]/2.
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In addition, g is eliminated from the right-hand side of (7) by use of (2) and (4) to get 8, g = —0, y from
which we obtain

leo UH+ +~ 4'

On neglect of the second time derivative of 4, (I) yields

(2i~„„8,+a'6)AC = (&u '/n, )[div(n, VC )+(iQ, /te„„)(8„48 —8 48„)n,].
To obtain an equation for the slow motion, we use the linearized ion equation of motion as in Refs.

2-4. If we ignore ion pressure, the transverse components of the ion flow are given by

(9)

where y, is the slow electrostatic potential and where 0, denotes the ion gyrofrequeney. If, in addi-
tion, we assume that quasineutrality applies to the slow motion, then, by combining the above equa-
tions with the linearized ion equation of continuity, we get

But, after averaging the electron equations over the fast Qow, we obtain for the adiabatic electron
Qow

a(ey, /m —a'n, /n, -(u'+v')/2) =div((otx vt),
where w& is the fast electron vorticity. Eliminating X, gives

(8,'+ 0,.' —c,'a)n, = (mn, /M )[a((u'+ v')/2) + div((ut && vt )],
where c, is the ion acoustic speed.

Now the last term on the right-hand side of (11) represents the emission of ion-cyclotron waves by
the electron vortex flow. As in previous work, ' ~ we neglect this source term since its role is a sec-
ondary one as regards the initiation of collapse. Substituting (4), (8), and (9) in (ll) yields

(8 g
+ 0 —c, h)n, = (m n/4M )b [ (1+0,'/(d UH ) I

V 4 I
+ (2i0,/(0 „„)(8„C8, —8, 4 8„)4 *].

Equations (10) and (12) have two limitations for applications to the results of Ref. 1. Firstly, they
only incorporate one of the three observed modulation time scales (namely, 2z/0, .). Secondly, the rela-
tive scales of the collapse regions along and across B obviously cannot be calculated. These limita-
tions can only be removed by incorporating the longitudinal variation. '

Nevertheless, the present treatment can explain the filamentary collapse at &~„H described in Ref. 1.
To show this, let us change to polar coordinates (r, 8) and assume that 8/80 =0. The latter assumption,
while not essential, is introduced because the bursts observed to occur on the time scale associated
with the ion-cyclotron wave displayed the azimuthal symmetry of the ~ =0 mode. ' Moreover, it was
also shown that there was an approximate balance between the plasma pressure and the ponderomotive
force. Therefore, let us also assume static balance.

With these simplifications (12) yields

Hence, from (10), the radial derivative of the velocity potential satisfies

8 2 8 1 8 1 0,
2ico —+a' ———r 4 +, 1+ '

IC I'4 =0""et err &r " 4x '
D (OUH

r

where yD is the Debye length.
It can now be shown that a singularity will develop after a finite time, by the method of Ref. 4. First

note that (13) has the invariant

where, now, 6 =r '(8/8r)r 8/8r Next, con. sider A = fo" IC„I'r'dr From (.13), we have d'A/dt =2Ia /
Hence, A =a It'/u&UH'+c, t+c„where c, and c, are constants of integration. Since A &0, it fol-
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lows from the last result that a singularity will develop after a finite time if I&0. As is well known,
such singularities describe the collapse of the wave field. In the present case, the collapse regions
take the form of magnetic-field-aligned filaments.

In view of the high amplitudes encountered in the experiments reported in Ref. 1, the condition I(0
would have been satisfied and, consequently, magnetic-field- aligned filamentary collapse was ob-
served.
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