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A modified droplet model is proposed that incorporates both compact fluctuations that
give rise to weak singularities at the first-order transition, and ramified fluctuations
that give rise to spinodals in high dimensions. Renormalization-group considerations
and studies of the percolation problem allow the use of ramified fluctuations to calculate
spinodal exponents for d > 8. The problem in lower dimensions is also discussed together
with possible interpretation of these exponents in light of the indeterminacy in locating

spinodal points.
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Mean-field theories (MFT) of the first-order
phase transition® and the metastable state (e.g.,
van der Waals) have two common characteristics:

(1) The metastable state is describable by ana-
lytic continuation of stable-state thermodynamic
functions through the first-order transition point;
in other words, there are no precursors to first-
order phase transitions in MFT.

(2) The metastable region (where the system is
in a local free-energy minimum) and the spinodal
region (where the system is unstable) are in MFT
separated by a sharp line on which the thermody-
namic functions are singular. These singularities
are in some ways similar to those that occur at
the critical point. In particular, the isothermal
susceptibility diverges as one approaches the
spinodal line in MFT.

The expectation that these two mean-field char-
acteristics are also exhibited in more realistic
systems has increasingly come into question.
Droplet-model approximations,® * renormaliza-
tion-group (RG) calculations,”® and series anal-
ysis™® have all indicated that there is a very
weak singularity as the coexistence curve is ap-
proached which prohibits analytic continuation

© 1981 The American Physical Society

through the first-order transition line (i.e., there
is a very weak precursor to the first-order tran-
sition).

More recently, the existence of the spinodal in
few dimensions has been questioned. Although
RG calculations have indicated the possible pres-
ence of MFT spinodals®* for d > 6, the numerical
and experimental evidence for MFT-like spinod-
als!! in d=2 and 3 is ambiguous. It is in fact not
at all clear that the notion of a spinodal point has
a well-defined meaning, a point we will return to
later.

The classical-droplet-model (CDM) approxima-
tion® appears to give an accurate description of
the singularity at the first-order transition™2;
however, it shows no trace of spinodal singular-
ities., This appears to be also true in several di-
mensions (d>6) where MFT appears to be de-
scribing the physics of spinodals properly® ° and
one might expect thermodynamic singularities.

In fact there is at present no theory of the first-
order transition and the associated metastable
state that is capable of describing both the pre-
cursor effects and the spinodal line.

In this Letter I propose a first step toward

1569



VOLUME 47, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1981

such a theory in the form of a new droplet model.
Although the approach is not rigorous, I believe
that it correctly describes the physics of spinod-
al singularities and is a meaningful first step to-
ward a more complete theory.

In order to explain the modified droplet model
(MDM) I will briefly describe the CDM approxi-
mation for an Ising model with a Hamiltonian

—BH=H};S;+K35 S;S;, ¢V

i (ij)

where g8=1/k3T and the sum 3} ;;, is over near-
est-neighbor pairs. For T «T,, the critical tem-
perature, we expect a magnetization per spin m
~ 1 with very improbable fluctuations of over-
turned spins. For T « T, the shape of the domi-
nant fluctuations of overturned spins is deter-
mined by energy minimization'? considerations
which indicate that they form compact domains.
(Compact domains are defined as clusters of S
spins that have a surface proportional to $(¢-1)/
in d dimensions.) Since the fluctuations are so
rare, they can be considered to be noninteracting.

It is now straightforward to show®® that the CDM
free energy is

fH,K)= 3 exp[-HS - Ks(@ /2], @)
s=1

The structure of Eq. (2) has been discussed ex-
tensively elsewhere.*® I only mention that the
free energy in Eq. (2) has an infinitely differenti-
able singularity and branch point at H =0,

The singularity in the CDM agrees with that
found in analysis of series expansions for Ising
models™?; however, no trace of a spinodal oc-
curs in the CDM in any dimension. The source
of the difficulty is that noncompact fluctuations
are incorrectly neglected for H # 0.

For any H+ 0, no matter how small, the drop-
let size S will become large enough so that HS
>>KS@= D/ In this regime the exponential damp-
ing in Eq. (2) is dominated by the volume term
and surface shapes become less important.
Moreover, the entropy available when such large
fluctuations assume noncompact shapes becomes
considerable. It is probable therefore that for
H+0 and S large enough, ramified rather than
compact fluctuations dominate. [Ramified fluctua-
tions of size S are those whose surface is propor-
tional to S° where (d - 1)/d<o<1. If 0=1, the
fluctuations are fully ramified.] The suggestion
that ramified fluctuations are connected with
spinodals was first made by Domb.'®* My approach
differs from Domb’s in several essential points
discussed below.
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Support for this point of view is found in RG
flows. Consider, for example, the RG flow for
the nearest-neighbor Ising model schematically
represented in Fig. 1 where I have used the Mig-
dal-Kadanoff'® " bond-moving transformation.

For K>K,, H=~0, the first few renormaliza-
tions increase both K and H until a critical value
of the ratio of the renormalized coupling con-
stants K("0)/H (") ~ 1 ig obtained after n, itera-
tions.® Further iterations decrease K until the
stable fixed point K =0, H =« is reached.

The essential point is that renormalized free
energies contain only those fluctuations present
in the unrenormalized free energy on a length
scale greater than 5" where b is the rescaling
length and » the number of iterations of the RG.
The fact that for » very large we have a renor-
malized coupling constant K’ =~ 0 implies that the
fluctuations at this length scale (b") in the unre-
normalized free energy are highly entropic.

The change from increasing to decreasing K un-
der renormalization occurs at K("o)/H (o) ~ 1
which implies that 5(") is the mean size of the
largest compact droplets, or the critical size is
S,=b"", From the RG transformations®° K"
=b?" 'K and H' =b?H valid for K("0)/H") =1 we ob-
tain S,~ (K/H)*. To summarize: The RG flows
indicate that below a critical length scale [,=S5,'¢
~K/H the dominant fluctuations are compact and
above this length scale the ramified fluctuations
dominate. The picture differs from Domb’s in
which ramified clusters dominate on all length
scales for T# 0. This difference is reflected in
the presence of a weak singularity as H - 0 in the
MDM and its absence in Domb’s picture.

These considerations lead to the following mod-
ified form of the droplet-model free energy:

F@ ,K)=3 CIK/H,S)

x exp[-HS —KS@4- V1] L1nE,  (3)

Ke
K

FIG. 1. Schematic RG flow in Migdal-Kadanoff ap-
proximation for nearest-neighbor Ising model.
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In Eq. (3) C(K/H,S) is a cutoff function that al-
lows In=, the part of the free energy that includes
the effect of the ramified fluctuations, to domi-
nate for S> (K/H)*. The first term in Eq. (3) has
been discussed elsewhere®!® as has the effect of
various choices for C(K/H,S)." I only mention
here that the first term in Eq. (3) has singular
behavior only slightly different from that of the
CDM as H - 0.%!® In the remainder of this Let-
ter I will concentrate on the second term in Eq.
(3). I note the following points: (1) I will take
the ramified droplets to be noninteracting except
for a possible excluded-volume contribution.
This is indicated by the RG flow to an infinite-
temperature fixed point for H # 0 (Fig. 1). (2) The
choice of which class of fluctuations to include
in the second term of Eq. (3) which I call the
ramified free energy is also dictated by the RG
flows. The statistics of clusters of overturned
spins connected by nearest-neighbor bonds in the
neighborhood of H=«, T =« are known. In per-
colation this is referred to as the lattice animal
problem.?> 213 Tt is the lattice animals that form
the droplets for our ramified free energy.

We know?® that lattice animals are fully rami-
fied so that the surface is proportional to the vol-
ume (i.e., o0=1). The number of lattice animals
with S sites is also known; however, these sta-
tistics are only applicable when the animals are
independent. We must consider therefore a pos-
sible excluded-volume effect. The arguments I
employ are quite familiar in polymer physics.*
Here I follow de Gennes.?'?

Consider two clusters, A and B. The repulsive
interaction between any two sites in different
clusters can be written as « (i) =v5(R;;) where v
is a strength parameter. The mean interaction
per spin of two clusters occupying the same re-
gion of space is therefore given by

> uif) =v 5 (6R,,;) ~vS?/S

JjEB je B
where $%/S%/%f is the mean number of sites in
cluster B that interact with site 7 in cluster A
and d;, the fractal dimension,” is defined by 1
=S where [ is the cluster diameter. For**d>8,
d;=4 and d/d;>2 so that the cluster interaction
is zero in the limit S—~, For d=2 and 3, d,=3
and 2, respectively,” so that the interaction en-
ergy is infinite.?* For d=4-"7, the Flory formu-
la** d,=2(d +2)/5 gives a good'?® approximation
for d;,. The Flory result gives d/d; <2 in this
range. For**»2*d=8, d/d,=2.

For d > 8 therefore we can use lattice-animal

statistics. The number of clusters of size S is
then given by

ns~ewS/S5/2, (4)

where w is a known function® of d. It is now sim-
ple to show™ that the singular part of the free en-
ergy generated by the fully ramified droplets is
given by

Fp=1nE = SZ) expl- H +K - w)S]/S%>. (5)

As mentioned above, the classical, and our
modified, droplet models are low-T (high-K) ap-
proximations.*!® The parameter w is fixed by
geometry and lattice type and is finite®® (for ex-
ample, w is monotonically increasing and for d
=9, w~4). Consequently in the range of validity
of these droplet models we certainly have K >w.
I am interested in the singular behavior of Fy
which can occur only for H negative. As H ap-
proaches H, = - (K —w) from above along the real
H axis the sum in Eq. (5) can be converted to an
integral via the substitution ¢t = (H +K —w)S. The
conversion will not affect the singular behavior
of F.?® The divergence in the isothermal sus-
ceptibility as H -~ H, is obtained from

xr=WH —H) " [[" (/1) dt ®)

so that y,~#H -H,)" Y? or yg=%. Similarly we ob-
tain Bg=3 and 2 —a =3, which characterize the
singular behavior of the magnetization and free
energy as H—~H,. These exponents are also those
that are obtained in a mean-field theory.® Treat-
ment of the problem for d <8 must include the ex-
cluded-volume effect. This is being pursued.
These considerations of singularities must be
discussed in light of the indeterminacy inherent
in the notion of spinodal points.?” One way of ex-
amining the problem is to construct a restricted
partition function in the spirit of Penrose and
Lebowitz.! In this method all configurations are
eliminated from the sum that contain fluctuations
that nucleate the system into the stable phase.
From Eq. (3) and physical considerations the ful-
ly ramified droplets I consider cannot nucleate
the stable phase and therefore can be unambigu-
ously kept in any restricted sum. Compact fluc-
tuations, however, are a more complicated case.
One can certainly keep compact droplets up to
some critical size; however, one could also keep
compact droplets up to any arbitrary finite size.
This arbitrariness reflects the “fuzziness” of
the characterization and measurement of the met-
astable state as one moves away from the coex-
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istence curve.

As discussed above, however, the spinodal ex-
ponents for d > 8 involve only fluctuations which
are fully ramified and which can be unambiguous-
ly kept in any restricted partition function. This
implies that the spinodal exponents are not depen-
dent on what restrictions are used. The same,
however, cannot be said about the spinodal tem-
perature and amplitudes. In analogy with critical
phenomena these quantities also depend on the
physical characteristics of the system at short
length scales (i.e., of the diameter of nucleating
droplets near the spinodal) and hence will depend
on the particular restriction used. I conclude
that if the spinodal can be reached experimental-
ly,'* the spinodal temperature and amplitude of
divergences will depend on how the experiment
is done but the exponents will be universal.

In conclusion I have introduced a new droplet
model that incorporates both fully ramified and
compact fluctuations. This model exhibits a weak
singularity at the coexistence curve as well as
classical spinodals for d >8 where MFT seems to
be correct. These spinodals are characterized
by universal exponents that are obtained by the
association of the problem via RG with a percola-
tion problem; however, the location of the spinod-
al point and amplitudes of singularities are not in-
dependent of the theory (i.e., restrictions) or the
method of performing the experiment. In few di-
mensions the ramified fluctuations have an im-
portant excluded-volume effect that may strongly
modify the behavior found in several dimensions.
It is also interesting to note that this work com-
bined with the work of Parisi and Sourlas® indi-
cates a possible connection between spinodals
and the Lee-Yang edge singularity.?®

I would like to particularly thank K. Binder for
interesting and enlightening conversations. I al-
so thank J. D, Gunton, L. Schulman, and D. Stauf-
fer for useful conversations. The author also

1572

would like to thank the Kernforschungsanlage
Julich for support during a portion of this work.

0. Penrose and J. L. Lebowitz, J. Stat. Phys. 3, 211
(1971).

%J. S. Langer, Ann. Phys. (N.Y.) 41, 108 (1967).

3M. E. Fisher, Physics (N.Y.) 3, 255 (1967).

‘C. S. Kiang and D. Stauffer, Z. Phys. 235, 130 (1970).

5W. Klein, D. J. Wallace, and R. K. P. Zia, Phys.
Rev. Lett. 37, 639 (1976).

fW. Klein, Phys. Rev. B 21, 5245 (1980).

'G. A. Baker and D. Kim, J. Phys. A 13, L1103 (1980).

8], G. Enting and R. Baxter, J. Phys. A 13, 3723
(1980). _

°J. D. Gunton and M. C. Yalabik, Phys. Rev. B 18,
6199 (1978). -

10G. Dee, J. D. Gunton, and K. Kawasaki, J. Stat.
Phys. 24, 87 (1981).

UK, Binder, Amn. Phys. (N.Y.) 98, 390 (1976).

121, Landau and E. M. Lifshitz, Statistical Physics
(Pergamon, London, 1958).

13y, H. stillinger, J. Chem. Phys. 38, 1486 (1963).

14y, Klein, to be published.

15C. Domb, J, Phys. A 9, 283 (1976).

%A, A. Migdal, Zh. Eksp. Teor. Fiz. 42, 1457 (1975)
[Sov. Phys. JETP 42, 743 (1975)].

"L, P. Kadanoff, Ann. Phys. (N.Y.) 100, 359 (1976).
18yy, Klein, unpublished.

R, K. P. Zia, Z. Phys. B 41, 129 (1981).

2D, Stauffer, Phys. Rep. 54, 1 (1979).

a7, Lubensky and J. Isaacson, J. Phys. (Paris), Lett.
41, 1469 (1980).

2bp_ @. de Gennes, Nuovo Cimento 7, 363 (1977).

22F, Family, J. Phys. A 13, L325 (1980).

%3G, Parisi and W. Sourlas, Phys. Rev. Lett. 46, 871
(1981).

p, Flory, Principles of Polymer Chemistry (Cornell
Univ. Press, Ithaca, 1971), Chap. XII.

D, 8. Gaunt, J. Phys. A 13, L97 (1980).

261,, Schulman, private communication.

2T"These considerations arose and were clarified in
extensive conversations with K. Binder.

28M. E. Fisher, Phys. Rev. Lett. 40, 1610 (1978).



