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Once V is determined the specific heat can be
evaluated.

The motivation for solving the VG model is pro-
vided by a consideration of computational cost,
the energy accuracy required for a specific-heat
calculation being considerably higher than that
for the susceptibility. While the specific-heat
curve for the spinless VG model requires the di-
agonalization of a maximum matrix size of 80
& 80, an estimated size of 300x 300 would be need-
ed to ensure the same accuracy in a Kondo calcu-
lation. Relative to the Kondo Hamiltonian, a cal-
culation utilizing the UG Hamiltonian amounts to
a, hundredfold reduction in computing time.

This research was supported in part by the Na-
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Monte Carlo data and duality arguments, applied to a lattice model, are presented
which indicate that a three-dimensional type-II superconductor should have a transition
asymptotically equivalent to that of a superfluid with reversed temperature axis, and
not a first-order transition. Results may apply to the nematic —smectic-A transition.

PACS numbers: 74.40.+ k, 64.70.-p

Several years ago, Halperin, Lubensky, and
Ma' argued that the phase transition in supercon-
ductors and the nematic to smectic-A (NA) transi-
tion in liquid crystals should be weakly first order
in character. Although the size of the first-order
transition in superconductors was found to be too
small to be detected experimentally, the size was
estimated' to be well within the accessible range

for liquid crystals. Experimentally, however,
the NA transition often appears to be second or-
der. ' Recently, Helfrich and Miiller4 have shown
that the high-temperature expansion of the XY
model represents, upon reversal of the tempera-
ture axis, the statistical mechanics of a system
of sterically interacting directed loops. This sys-
tem of loops, therefore, exhibits a phase transi-
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tion wi.th XK exponents, but distinguished by the
fact that the temperature asymmetry of the speci-
fic heat and other singular quantities is inue~ted
relative to the XK transition. Since the vortex
loops in a superconductor interact via a potential
which falls off exponentially with distance, Hel-
frich and Muller speculated that the three-dimen-
sional (3D) superconductor may exhibit the same
critical behavior as the loop model. He1f rich'

sV

Z, P,e) = J „(de, /2m) J „d[A;„] Q ezp[- pPQ
Igg. ]- i= g

where 9; is an angular (phase) variable at site i
of a simple-cubic lattice, & represents a lattice
derivative, and the integer-valued variables
[n;„]and the real variables [A;„]are defined on

the directed links between adjacent sites. In Eq.
(1), p is the inverse temperature and e is the
electric charge which couples the phase variable
0 and the vector potential A. This model is of the
Villain type where the exponential of a cosine has
been replaced by a periodic Gaussian function.
We have found strong evidence which indicates
that for 0&e &e, =13, this model undergoes an
inveAed XF transition. Our study thus confirms
the suggestion of Helfrich and Muller and predicts
a new type of phase transition for type-II super-
conductors and possibly for smectic-A liquid
crystals in three dimensions. For a type-I super-
conductor where the magnetic penetration depth
is shorter than the coherence length and parallel
vortices attract each other, a first-order transi-
tion is expected before the asymptotic critical re-
gion can be reached, ' and so our lattice model is
not applicable. The present study may also be a
step towards understanding several other systems
of interest (e.g. , 3D crystals and 4D compact
quantum electrodynamics) for which the topologi-
cal excitations are loops.

and Nelson and Toner' have also investigated a
dislocation loop mechanism for the NA transition
in three dimensions. There, however, the situa-
tion is complicated by the possibility of anisotrop-
ic scaling, ' ' which may invalidate the supercon-
ductor analogy.

With a view towards providing a better under-
standing of this situation, we have studied a three-
dimensional lattice superconductor model (LSM).
This model is defined by the partition function
3

Q(a„e, -2~n, „-eA;„)'-peal &&&A;l'],

Our conclusions about the nature of the phase
transition in the LSM are derived from two
sources. First, we show that exact duality trans-
formations on this model strongly suggest a phase
transition of the type described above. Then we
show that the results of a Monte Carlo simulation
of the thermodynamics of this model are consis-
tent with this description. Duality maps for the
LSM have been studied by several authors. "
Here, we propose a new interpretation of the re-
sults. First, let us consider the case e =0, i.e.,
the Villain model. By using the Poisson resum-
mation formula and doing the 6! integration, the
partition function can be written as'

(2)

where Q ' means that the link variables m;„have
zero divergence at each lattice site. Note that
the right-hand side of Eg. (2) can be interpreted
as the partition function at temperature I'"' =2P

of a collection of directed loops with energy per
unit length equal to unity, and a repulsive con-
tact interaction between two loop elements. By
going to the dual lattice, it can be shown' that
Zr(P) ~Zr .P, O), where

!(0, 1/2p, r) in the P Kplane sh-ould then correspond
to an inve~ted XF transition. The phase transi-
tion at the point (P,„,O) should be stable with re-
spect to turning on a small & because this changes
only the short-distance part of the interaction
G(l r, r, l), where—as the long-range part of the
interaction is expected to determine the nature of
the transition. The phase transition at the point
(0, 1/2p, r) should, on the other hand, be unstable
with respect to introducing a small p because this

Zr. P,K) = Q' exp[-2n'P QL, ~G(l r; —r, l )l,„K+l.;„-']
~'iuj

In Eg. (3), G(r) is a lattice Green's function which
behaves like 1/4~r for large r. The partition
function of Eq. (3) which describes a set of inter-
acting vortex loops defines a genexalzzed Vil/ain
model when the "chemical potential" E is differ-
ent from zero. It is generally assumed that the
Villain model is in the same universality class
as the XF model. Thus, the phase transition
should be X1'-like for K =0 and P =P,r, the in-
verse transition temperature of the Villain model.
It is clear from Eqs. (2) and (3) that the point
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corresponds to turning on a long-range interac-
tion. Thus, it is reasonable to expect a phase dia-
gram of the form shown in Fig. 1(a).

With use of the same transformations as above,
the partition function (1) of the LSM can be writ-
ten as'

Z, (8, e) (2 P) '""Z .(e'/4 ', 1/2P). (4)

The proposed phase diagram I. Fig. 1(a)] for the
generalized Villain model then implies that the
phase diagram of the LSM in the (T =1/P, e')
plane should look like Fig. 1(b). For e'&e, '
=4&'P,~, there is no phase transition. ' For 0(e'
&e,', the transition is of the inverted XY type.
This phase diagram is consistent with the renor-
malization-group result' that the ordinary Xl'
fixed point is unstable with respect to e' for d -4.
However, another possibility, consistent with the
renormalization-group and duality arguments, is
that part or all of the phase-transition lines in
Figs. 1(a) and 1(b) are first order. "

In order to clarify the situation, we have car-

1/2 P
CV ~

0

e

~i
0 ~C

4vr P2

(b)

v ~ 1 /Pcv T 1/P

(a)

ried out a Monte Carlo simulation of the thermo-
dynamics of these models. The behavior at e =0
was studied by simulating the model of loops de-
scribed by the partition function of Eq. (2). For
e &0, we found it most convenient to simulate a
model which is dual to the LSM. This model has
the partition function

FIG. 1. Proposed phase diagram for (a) the general-
ized Villain model and (b) the lattice superconductor.
The dots and asterisks, respectively, represent normal
and inverted XF transitions. The arrows indicate the
points where the simulations were done.

(5)

Ini(T " —T*)/T*-i, where T" is the temperature
at the specific-heat peak, we find that the data
are consistent with Eq. (7) with A =1.3 + 0.2 and
D = -1.6. Because of the inversion of the tem-
perature in going from the Villain model to the
loop model, the sign of the asymmetry D is re-
versed. Although the calculated value of i Di is
much less than 4, the results indicate that iDi in-
creases with I . The size dependence of the posi-
tion and the height of the specific-heat peak is
consistent with finite-size scaling' with o.' = 0.
An extrapolation to I- —~ gives T,"'"=0.66
+ 0.01, which implies that P,„=0.33~ 0.005. This
is consistent with the inequality, P,~- 0.322, de-
rived by Myerson. '

Our result for P,~ implies that for e'&e,'= 13,
the LSM has no phase transition. For e2 close to
zero, the situation is complicated by crossover
effects. For this reason, we chose to simulate
the LSM with an intermediate value of e =5, indi-
cated by the arrows in Fig. 1. Figure 3 shows
the results for the specific heat for L =3, 5, 10,
and 15. The data do not show any indication of a
first-order transition. We did not find any hys-
teresis in the internal energy. If we assume that
the partition function of a finite system w ith a
first-order phase transition is given by

Z,P,e) ~ (2~0) '""Z,.(1/P, e). (8)

For computational convenience, the continuous
variable 9 in Eq. (5) was replaced by a discrete
variable ~„with n. =100. The standard Metropolis
method was used in the simulations. Typically,
5000-10 000 time steps per site were used to
measure the internal energy and the specific heat.
The corresponding quantities for the LSM were
then calculated by using Eq. (8).

Our first project was to check that the Villain
model [or equivalently, the loop model of Eq. (2)]
exhibits a continuous transition with XY expo-
nents. In Fig. 2, we have shown the results for
the specific heat of the loop model (calculated
numerically differentiating the internal energy)
for samples with linear dimension I, = 5, 8, and
10 with periodic boundary conditions. The dashed
curve shows the specific heat of the L, =10 Villain
model calculated from the data by using Eq. (2).
The specific-heat exponent ~ of the 3D XY model
is known to be very close to zero. For a system
with n =0, one expects" the following behavior
for the specific heat for T -I', :

C =-A lniti —ADA sgnt+8,

where t = (T —T,)/T„and D = 4 from measure-
ments at the He ~ point. " From plots of C against Z(T) —exp(- Nf, /'T) +exp(- Nf, /T), (8)

Z, (P', e) = g J (4&; /2v) exp[- ~P'pi 6xn;i2 —(e2/8m )Q(6,„8;—2mn, &)2].
t~g p& jp

It is easy to show' that
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FIG. 3. Specific heat of the lattice superconductor for

e =5. The inset shows the height of the specific-heat
peak vs InL . The solid lines are fits by Eq. (9).
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FIG. 2. Specific heat of the loop model. The dashed
line shows the specific heat of the Villian model g =10)
at temperatures 4& ~I'. volved in estimating the background and correc-

tions to scaling, these numbers should not be
taken very seriously. However, it is clear from
Fig. 3 that the specific heat for T =T*+4T is
higher than that for T =T*—&T, which is the re-
verse of what one expects for the XY model. A
comparison with the dashed curve of Fig. 2 clear-
ly shows this inversion. Since the asymmetry in-
creases with I-, it is not an effect of the back-
ground. Also, the qualitative behavior of the spe-
cific-heat peak of the LSM at e' =5 (Fig. 3) is
very similar to that of the loop model (Fig. 2)
which represents the large-e' limit of the LSM
and which showed the inverted XY form as ex-
pected. Thus, the evidence indicates an inverted
XY transition for the LSM at e' = 5. Since the
simulation was done for only one intermediate
value of e', we cannot rule out a first-order tran-
sition for e' close to zero. However, such a
first-order transition would presumably be very
weak, and therefore hard to detect numerically.

The authors are very grateful to D. R. Nelson,
J. Toner, and S. Doniaeh for stimulating discus-
sions, and to S. Kirkpatrick for his hospitality
at the IBM Thomas J. Watson Research Center,
where part of the computation was done. This
work was supported by the National Science Foun-
dation through the Harvard University Materials
Research Laboratory and Grant No. DMR 77-
10210.

C = ——in[(t +a7)'+b'T'] — tan ' +&, (9)
A DA, t +aT
2 m bT

with w =I- 3', which reduces to Eg. (7) for I.-~.
Fits with A. =0.3, T, =1.62, a =0, 5 =0.52, D
= —2.68, and 8 =1.3 are shown by the solid lines
in Fig. 3. Fits to other finite-size scaling forms
give somewhat higher values for 4, but similar
values for D. Because of the uncertainties in-

(a)' Present address: Department of Physics, Univer-
sity of Minnesota, Minneapolis, Minn. 55455.
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where f, and f, are the free energies per site of
the two bulk phases, then it follows that the
height of the specific-heat peak is C =const
+W(AS)2/4, where bS is the jump in the entropy.
We find that it is impossible to draw a straight
line through all the four data points in a plot of
C vs N =I'. From the maximum slope of a
straight line drawn through the data points for I
=5, 10, and 15 we estimate that if this transition
is first order, it must have &8& 0.03. Since all
the parameters in our model are of order unity,
there is no reason to expect such a small first-
order transition.

As shown in the inset of Fig. 3, C is approxi-
mately proportional to lnL, which indicates a con-
tinuous transition with + = 0. We find that plots
of C vs ln~(T —T*)/T*~ are approximately linear
for T &T*, but show considerable curvature for
T)T*. However, we have obtained reasonable
fits to the data close to T* with a simple finite-
size scaling function of the form



VOLUME 479 NUMBER 21 PHYSICAL REVIEW LETTERS 23 No+EMBER 1981

B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys.
Rev. Lett. 32, 292 (1974).

B. I. Halperin and T. C. Lubensky, Solid State Com-
mun. 14, 997 (1974).

For a review, see J.D. Litster, R. J. Birgeneau,
M. Kaplan, C. R. Safinya, and J. Als-Nielsen, in Or-
dering in StrongZy EZuctuating Condensed Matter Systems,
edited by T. Riste (Plenum, New York, 1980).

W. Helfrich and W. Muller, in Continuum Models of
Discrete Systpmg (Univ. of Waterloo Press, Waterloo,
Ontario, Canada, 1980), p. 753.

W. Helfrich, J. Phys. (Paris) 39, 1199 (1978).
D. R. Nelson and J. Toner, Phys. Rev. B 24, 363

(1981).
T. C. Lubensky and J.-H. Chen, Phys. Rev. B 17,

(1978) .
T. Banks, R. J ~ Myerson, and J. Kogut, Nucl. Phys.

B129, 493 (1977) .
P. R. Thomas and M. Stone, Nucl. Phys. B144, 513

(1978); M. Peskin, Ann. Phys. 113, 122 (1978).
Note that a renormalization-group study [S. Hikami,

Prog. Theor. Phys. 62, 226 (1979)] of the CP non-
linear 0. model which corresponds to a multicomponent
superconductor in the e limit indicates a con-
tinuous transition in 2+ & dimensions.

'M. Barmatz, P. C. Hohenberg, and A. Kornblit,
Phys. Rev. B 12, 1947 (1975).

M. E. Fisher, in Critical Phenomena, edited by M. S.
Green (Academic, New York, 1971).

R. J. Myerson, Phys. Rev. B 16, 3203 (1977).

Abundance Enhancements in Cosmic Rays Produced by Collisionless Shocks

David Eichler
Astronomy Program, University of Maryland, College Park, Maryland 20742

Kem Hainebach
Lauwence Livermore National Laboratory, Livermore, California 94550

(Received 18 May 1981)

It is shown that shocks preferentially accelerate partially ionized heavy elements over
protons. Within the framework of a previously published model of injection, the spectra
of different ion species are calculated from thermal to ultrarelativistic energies. For
typical astrophysical parameters, the predicted enhancement is in qualitative agreement
with observations for a 10 -K preshock plasma; ions with ~ )10 are enhanced by about an
order of magnitude or so. The continuing increase with energy of the heavy-element
abundances into the air-shower regime is discussed.

PACS numbers: 94.40.Lx, 94.40.Cn, 94.40.Ht, 94.40.Pa

The observed composition of cosmic rays is an
important constraint on theories of their origin.
It indicates, given the composition of the thermal
plasma, the relative probability that any given
type of ion species meets the criterion for be-
coming a cosmic ray. Heavy elements, Z.) 10,
appear to be enhanced by about one order of mag-
nitude relative to protons at -1 GeV/nucleon,
and similar enhancements are seen in solar
cosmic rays at about 10 MeV/nucleon. ' The en-
hancement of heavy elements in the galactic
cosmic rays increases with energy, and recent
air-shower studies' suggest that at total energy
of about 10"eV, cosmic rays may be mostly
iron. This represents an additional enhance-
ment of one to two orders of magnitude above
that at I GeV.

Recently, a model for cosmic -r ay pr oduction
was proposed' in which energetic particles are

drawn directly from a thermal pool. In the
model, all particles flowing into the shock are
compressed and accelerated to some extent, as
required by definition of a shock, but a very few
receive a far larger share of energy than most,
which makes them cosmic rays. The fact that
thermal particles as well as superthermal ones
are included in the theoretical description of the
acceleration makes it possible, in principle, to
calculate the composition of cosmic rays relative
to the thermal plasma.

In practice, the calculation is very difficult;
however, the enhancements can be calculated
with analytic approximation at some sacrifice of

accuracy. The purpose of this Letter is to show
qualitatively why heavy elements are accelerated
more effectively than protons, and to calculate
the enhancement with use of an analytic approxi-
mation.
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