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One-Parameter Scaling of Localization Length and Conductance in Disordered Systems
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The localization length for disordered systems is calculated with a new recursive
method. The scaling behavior of the conductance is determined. The assumptions about
the P function made in recent analytical work are confirmed. Only localized states are
found for two dimensions. In three dimensions there is an Anderson transition at a
critical disorder of W, = 16+0.5 with critical exponents for the conductivity and the
localization length of s = v = 1.2+ 0.3, respectively.

PACS numbers: 71.50.+t, 71.10.+x, 71.30.+h, 71.55.Jv

Recent theoretical studies of localization have
been focused on the scaling behavior of the con-
ductance"' and on numerical investigations of the
electronic states and the conductivity. ' ' There
is considerable inconsistency, particularly be-
tween analytical and numerical results in two di-
mensions. Here scaling theory predicts, under
certain assumptions, localization for any disor-
der, ' the dependence of the conductance as a
function of the spatial dimensions of the sample
changing from exponentially to logarithmically
decreasing at some critical disorder. The pre-
dictions from numerical data range from the ex-
istence of an Anderson transition" to localiza-
tion for any disorder but with a power-law de-
crease of the states for weak disorder, ' and loga-
rithmic scaling of the conductance. ' However, in
all of the numerical calculations the error bars,
if taken seriously, were such that no definite con-
clusion was possible. '

We present numerical results for the localiza-
tion length and the conductivity in two and three
dimensions, the accuracy of which exceeds that
of the earlier work by orders of magnitude. More-
over, the accuracy is quantitatively controllable
and only limited by the accuracy of the computer
since the method used is an implementation of
exact analytical relations. The data support the
assumptions made in the scaling theory of Abra-
hams etal. ' and indicate that for d & 3 only local-
ized states exist independent of the degree of dis-
order, whereas for d = 3 there is an Anderson
transition at a finite critical disorder with a con-
tinuous drop of the conductivity.

We consider a system of length X in, say, the
x direction, and lateral dimensions M" ' in the
y and z directions described by the usual Ander-
son tight-binding Hamiltonian with site diagonal
matrix elements, which are rectangularly dis-
tributed with width 9". The off-diagonal matrix
elements are taken as unity between nearest

neighbors and zero otherwise. Boundary condi-
tions are periodic in the y and z directions. For
N large compared with M the system is essen-
tially one dimensional. Thus, we may define a
localization length A. depending on M and 8' via
the transmission coefficient, i.e.,

~ '=»m [2(N-1)] 'lnTrI(1IG(N)IN) I'. (1)

Here (1I G(N)IN) denotes the M~ '-dimensional
matrix of the resolvent [E—II(N)] ' between the
site states in the first and Nth slice of the sys-
tem.

The matrix elements of the resolvent may be
obtained from recursion relations. ' ' The sim-
plest possibility is to calculate the inverse of
(1I G(N) I », &„ f»m

(2)

which involves the Hamiltonian H„of the Nth iso-
lated slice of the system. This is faster than the
method of Ref. 7, because it invo1. ves no matrix
inversion, but it tends to numerical instability.
Since the eigenvalues of A„rise exponentially
with N at different rates, the smallest of them is
lost when its ratio to the largest becomes com-
parable with the accuracy of our computer. The
smallest eigenvalue, however, contributes dom-
inantly to (1IG(N)IN). This problem can be
overcome by regularly multiplying Eq. (2) from
the right-hand side by (1IG(N) IN). The numeri-
cal implications of this can be tested by varying
the frequency of this operation. In practice, in
order to maintain an accuracy of the localization
length of 1%, it is sufficient at every tenth itera-
tion, on a machine with a word length of 48 bits.
The statistical accuracy of A. can be controlled by
noting that as N-~ its variance is given by

( 6 X'(N)) = 2(A(N)) /N (for fixed M)." We have
checked this by calculating ~X' simultaneously
with X in each step. N was increased until aA/A.
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=1% was reached. For W=5 in two dimensions
and M =32 this required %=3&10', but conver-
gence is somewhat faster for A. «M.

We calculated the localization length A(W, M)
for d = 2 with 4 & W &15 and M= 1, 2, 4, 8, 16, 32,
and for d = 3 with 10 & W & 28 and M = 1-7. Because
of the periodic boundary conditions our data for
M = 1 do not agree for d = 2 and 3, and are differ-
ent from the d =1 limit. " In order to investigate
the behavior of A. with large M we introduced a
scale change M-M/A (W), where the scaling
parameter A„(W) depends only on the disorder.
Minimizing the variance of the 1nl A. „(w)/Mj val-
ues which correspond to a given value of A(W,

M)/M, we found the following scaling laws:

~(W, M)/M =f, (Z„(W)/M ),
which are shown in Fig. 1. d = 2, 3 means two-
dimensional (2D) and three-dimensional (3D), re-
spectively. No assumption about the form of f,
was made, except that the exponent of M in the
left-hand side of Eq. (3) was fixed at 1, since
only this yielded scaling within the accuracy of
the raw data. For d =1 the scaling function is
f,(x) =x, trivially. The scaling laws of Fig. 1
are the most important result of this work and

lie at the heart of the following discussion. We
investigate first the meaning of A. „(W).

We first note that f, is monotonically increasing
with A„(w)/M, whereas f, is singular at &(W, M)/
M=0. 65 ~0.1 such that for W&16 the data scale
on the lower branch, whereas for W~16 they
scale on the upper branch. Since f,(x) -x as x
-0 we identify A. „(w) =lim~ „A(w, M). The same
holds for the lower branch of f,. Thus, A. „(W) is
the (finite) localization length in the infinitely
large systems. In 2D the data do not show singu-
lar behavior down to S'=4. Any Anderson transi-
tion would have to occur at R'&4. This is in con-
trast to the recent work by Pichard and Sarma. '
They interpret their data as showing a transition
to power-law localization at W = 6. We believe
that this discrepancy is due to the restriction of
their calculations for d=2 to M&16. In 3D the
above interpretation of A. „(w) as a localization
length is only valid above the critical disorder of
W, =16+ 0.5. In the upper branch of f, we ob-
serve that A(w, M)/M increases with increasing
M. From Fig. 1 we deduce for W & W', and large
M approximately

~(W, M)/M -M/~ „(W).
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FIG. 1. Scaling function && /&~ vs ~ /&~ for the localization length && of a system of thickness kl for (a) d = 2 (k1~ 4) and (b) d=3 (~~ 3). Insets show the scaling parameter & as a function of the disorder 8'.
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What does A. (W) mean in this case? The trans-
mission coefficient T of a very long bar may be
written as

T = exp[-2N/A. ( W, M) ].
Taking Landauer's relation between the conduc-
tance g and T as valid"'" we have for large g

g-M /NX„(W) .
Comparison with the classical relations between

g and the conductivity 0 of a rod of length N
cross section M' yields finally

o(W) =1/x„(W).

The data for A. as a function of the disorder
are shown in the insets in Fig. 1. For d =3 the
critical exponents v and s for the localization
length and the conductivity were determined.
They were found to be equal and s = v=1.2+0.3,
the error bar resulting mainly from the uncer-
tainty in the position of 8', . In view of the in-
trinsic difficulties in a numerical determination
of these exponents we consider our result as in
good agreement with those of Vollhardt and
Wolf le, "who derived analytically v = s = 1. For
d =2 we find it very difficult to assign a power-
law behavior for A. „(W) as W decreases. A fit
by an essential singularity of the kind proposed
in Ref. 14 turned out to be successful, implying
that X„(W) -[exp(const/W')]/W'. However, the
data are also consistent with A. „(W) -exp(const/

they scale to the limit of extended states for in-
creasing M, and below which they scale to zero.
This is in accord with the predictions of Ref. 2.
Since P,(g) does not change its sign, the behavior
of P, is solely determined by the second factor
in Eq. (9) and the exact definition of G(T) is not
very important. Since we have a large number
of points in Fig. 1 and f~(x) is smooth we may
calculate the derivative in Eq. (9) very accurately.
Results, which were obtained with use of the
Landauer form of G(T), are shown in Fig. 2.
They are consistent with those of Ref. 2. In par-
ticular, f~(x) -x for f~ -0 in all dimensions gives
P, (g) -lng, which is characteristic of localiza-
tion. In the limit of large g, which corresponds
to f, - ~, we get P, (g) = + 1 for d =1 and 3, re-
spectively, because f,(x) =x and f,(x) -x ' as x
-0, in the conducting regime. In 2D our data
are consistent with f,(x) -lnx as x -™.This im-
plies P(g) -1/g, as predicted analytically. '"
Since the behavior of our numerically determined
P function depends crucially on the scaling func-
tions for the localization length, which were de-
rived uithout any a priori assumption about the

We may calculate the scaling behavior of the
conductance of a very long bar using

ding = ding+ dlnM.~lng ~lng
&lnM

Eliminating one length scale by setting dlnN
=dlnM, i.e., N/M remains constant, and assum-
ing g to depend only on T, i.e., g= G(T), we ob-
tain

ding
~ ( )

dlnf, (x)
mm

(9)

Here x =A. (W)/M and P,(g) is the P function of
the case where A(W, M) is independent of M, i.e. ,
d= 1. The result (7) suggests that, in the con-
ducting regime, the relative values of M and N
are unimportant. This is also true for X (W)
«M in the localized regime. Therefore we take
N =IVI in what follows.

Since, as noted earlier, there is a critical
value of A. (W,M)/M in SD; there are also critical
values of T and correspondingly g above which

FlG. 2. Scaling function P (g) for the conductance g.
Full line is for d = 1. Triangles and plusses are for
d = 2 and d = 3, respectively, as calculated from the
data in Fig. 1.
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shapes of f, purely from the numerical data, we

may consider the present results as an a Poster
iori justification of the assumptions of continuity
and monotonicity of P(g) in Ref. 2 and as support-
ing the existence of a single scaling variable.
Since the conductivity of a macroscopically large
system is a meaningful quantity, and the ana, -
lysis of Eqs. (4) to (7) does not depend on the
assumPtion of only one dominant channel, the
number of contributing channels must not depend
on M for a very large square or cube; i.e., the
number of channels for which X(W, M) -N' must
become independent of M when M- ~. This
strongly supports the assumption of only one
dominant channel and therefore the use of the
Landauer formula for G also in the case of a
multichannel system. "
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The frequency (f) and temperature (T) dependent conductivity (o') is reported for cis-
(CH), trans-(CH)„, and ammonia-compensated (CH)„. A strongly T-dependent dc o to-
gether with a weakly T-dependent ac c were observed for predominantly ris-(CH)„and
for NH&-compensated samples, similar to &(f,t ) of many semiconductors. The trans
(CH)„has a larger '

weakly T-dependent dc c and anomalous strongly T-dependent ac o'.

The latter results are in good agreement with Kivelson's theory of charge transport via
intersoliton electron hopping.

PACS numbers: 72.20.Fr, 71.30.+h

Recently, considerable experimental" and
theoretical" interest has focused on the two
isomers of polyacetylene, ' trans -(CH) „and cis-
(CH)„. According to the soliton model, "un-
doped (CH)„ is a semiconductor due to a com-
mensurate Peierls distortion. For the teams
isomer, the two possible phases of the dimeriza-
tion are degenerate in energy, and a soliton is
the boundary between regions of the two phases.
The energy level associated with the soliton is at
midgap. When singly occupied the soliton is neu-

tral with spin —,'. If the state is doubly occupied
or empty the soliton is charged and spinless. For
the cis-(CH)„ the two possible phases of dimer
ization (cis transoid and tran-s cisoid ) are -not

degenerate in energy. Hence the formation of
solitons is not favored energetically in cis-(CH)„.
Magnetic, ' ' infrared, ' luminescence, "and photo-
conductivity" studies have been intepreted as
evidence for the presence of solitons in the trans
isomer and their absence in the cis isomer.

In this Letter we report the results of an exten-
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