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The statistics of pure quantum states of the harmonic oscillator is separated into a
quantum mechanical and a classical part by associating a classical analog with each
quantum state. Several types of states are considered and it is shown that all pure
states of the same average energy are equally close to their classical analogs.
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As is well known, a quantum mechanical de-
scription, even by a pure state, is a statistical
description; whatever the state of the system,
the values of certain dynamical variables are
predictable only by a probability density. Heisen-
berg’s uncertainty principle precludes a com-
pletely deterministic description. However, not
all of the uncertainty need be considered to be of
quantum mechanical origin. In the case of mixed
states, this is, of course, obvious, since a
probability—coming from a lack of information
that could, in principle, be eliminated—is ex-
plicitly introduced into the description. In the
case of pure states, it is not so obvious that part
of the uncertainty may be considered to be clas-
sical. A distinction between—or identification
of—types of uncertainty in a quantum-state de-
scription will not yield new results in the cal-
culation of expectation values. It will yield, how-
ever, a deeper insight into quantum mechanics
and its relation to classical theory, and will elim-
inate a popular misconception to be described
later. It is the purpose of the present paper to
present and illustrate a method of identifying the
classical part of the uncertainty in pure states of
the harmonic oscillator. While one may expect
the ideas involved to be applicable to other sys-
tems also, the widespread use of the harmonic
oscillator as a model in many branches of physics
makes it a system of fundamental interest in it-
self.

The method calls for associating with each quan-
tum state a classical phase-space probability den-
sity, the “classical analog” of the quantum state.
The uncertainties of the classical distribution are
then identified as the classical part of the total
uncertainty of the quantum state. As will be seen
immediately, merely the criteria for construct-
ing the distribution contain sufficient information
for identification of the classical part of the un-
certainties in the fundamental variables.

An attempt to present a quantum mechanical
description as a purely statistical description,
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in which averages of dynamical variables are ob-
tained by a function analogous to a probability
density, encounters two obstacles: the depen-
dence of this function on the ordering of the fac-
tors when a product of (quantum mechanical)
variables is averaged, and the assumption of
negative values by this function for a specific
ordering scheme.' One can, however, set up
criteria for constructing a purely statistical de-
scription which comes “closest” to the quantum
mechanical description.? Consider the harmonic
oscillator of frequency w with coordinate ¢ and
momentum p in dimensionless form, the Hamil-
tonian being H = $hw(g® +p?). Where distinction
between operators and ¢ numbers need be made,
operators will be designated by a circumflex
(such as g, p, with [§,p]=7) and ¢ numbers by
a tilde (such as g, p). A classical statistical de-
scription is given by a phase-space probability
density P(g, ), while a pure-state quantum mech-
anical description is given either by the quantum
state |y) or by the (equivalent) density matrix
| ¥ (y|. Averages—or expectation values—of
functions of ¢ and p, say ¢(q, p), are obtained
from the expressions (¢(q,p))= (¥le @, p)lV),
(o(a,p)= || aqdp P(a, p) #(a,p).

The classical analog of the state |y) is defined
as the probability density P(g, p) which meets the
following criteria:

@={p), (p)=(p), (1)
A7=KAg, Ap=Kuap, V(g,p)=K*V(q,p), (2)
A, b) <a¢lg, ), (3)

where (a¢)?=(@)2={@) Viq, p) = +{qp +pa) - {q) p),
K?=-1[(Ag)? +(Ap)?] ", the equality sign in (3)
applies only when the right-hand side vanishes,
¢(q, p) is any Hermitian polynomial in § and 5,
and ¢(g, p) is the corresponding c-number func-
tion.®

The meaning of the first criterion is obvious.
The second and third criteria require that the
classical uncertainty be less than the quantum
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mechanical uncertainty unless the latter vanishes,
a recognition of the fact that ideal quantum meas-
urements produce uncertainties, in general, while
(ideal) classical measurements do not.* The
criteria refer to quantities evaluated at a given
time. The time independence of criteria (1) and
(2) can be demonstrated simply. With the nota-
tion ¢(0) =¢,, etc., the equations of motion ¢

=wp and p = — wq are solved by

q(t) =g, coswt +p,sinwt,
p ) =p,coswt —q,sinwt,
which yield
[Aq ()] = (Aq,)? coswt + (Ap,)? sinwt
+V(q,,p,) Sinwt coswt,
[ap @) = (Aq,)? sin®wt + (Ap,)® cos’wi
-V (go,Po) Sinwt coswt,
V(g®),p @) =[(8po)? - (Ag)?] sinwt coswt
+V(go,po) COS2wE.

These relationships are valid both classically
and quantum mechanically. Furthermore, K is a
constant of motion, since

hwl(Ag) + APV 1=H@G,p) -H(a),(p)).

Thus, if criteria (1) and (2) are valid initially,
they are valid for all time. The above discussion
of time dependence utilizes the Heisenberg pic-
ture, quantum mechanically, and its equivalent,
classically. The Schrodinger picture and its clas-
sical equivalent may also be used, in which case
P rotates clockwise with angular velocity w,
while ¢ and p are time independent.

It is instructive to examine the implications of
the criteria concerning the energy. One can
write '

Hy -H(q),(p)) =K [H) -H(q),{p))],
which yields

@ =@ - Hiw.
We see that the average energy of the classical
analog is just that of the quantum state reduced
by the zero-point energy. In view of the fact that
the zero-point energy is of purely quantum me-
chanical origin, this is a physically reasonable
result.

The limits of K are also of interest. From
AGAp > 3 (the uncertainty principle in present no-
tation) we have (Ag)*+(Ap)*= 1, which implies
0<K=<1. Since K is the fraction of the uncer-
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tainty of the quantum state which may be regard-
ed as classical, this means that the classical
analog can be completely deterministic, a result
that we should reasonably expect. .
Several types of quantum states widely used to
describe the harmonic oscillator will now be con-
sidered. The first is an energy state, defined by
H|n) = n +3)iw|n). Since there is no uncertainty
in the quantum mechanical energy, there can be
no uncertainty in the classical energy, according
to criterion (3), and the above relationship be-
tween () and (A) shows that H is precisely nfiw.
Furthermore, since the criteria are stationary,
the classical analog must be stationary.® The on-
ly probability density of precise energy that is
stationary is a microcanonical ensemble of in-
finitesimal energy width. We consider, there-
fore, the applicability of the criteria to the mi-
crocanonical ensemble of energy nhw. With use
of polar coordinates given by § =# cosf, p =# siné,
this ensemble is described by P(r,0) = (277,)"!
X 8@ —7,), where »,=(2n)"?, and classical aver-
ages are calculated by

{0@,p) = (Zﬂ)'lfoz"de @ r,cost ,r,sing).

Note that {(g) ={(p) ={gp +pgq) =0 both classically
and quantum mechanically, so that criterion (1)
is satisfied. Also, (AG)*= (Ap)?=n+%, (AG)?
=(ap)P=n, K®=nln+3)"?, so that criterion (2)
is satisfied. As for criterion (3), a proof that it
is satisfied in its complete generality has not yet
been found, and we consider only several illus-
trations. Noting that (¢*”*% =0, we obtain
(Ag?m*1)2=(¢*2m*1)y  From the angular integra-
tion above, we get (7°™ =n"(2m)!12 "(m!) % It
can be shown that (§®™) is a polynomial in » of
order m , with the highest-order term being equal
to (§®", and the lower-order terms being posi-
tive. For instance, (g% =5 (20%° + 30x® +40x + 15),
while (7°) =3n®. We therefore have A (§?"*1)
<A(@®*"), An identical argument applies to
A(p®mtt), Other examples, not too tedious to cal~
culate explicitly, are consistent with criterion
(3), and one may conjecture that it is satisfied
generally. It is of interest to note that the term
of highest order in the polynomial (in ) obtained
for the expectation value of a product of m factors
g and r factors p, in any order, can be shown to
be identical to (§™p"). Thus, the statistics of the
energy state becomes identical to that of the mi-
crocanonical ensemble for large n.

We proceed, next, to coherent states, defined
by 272G +ip)|la) =ala), o being a complex num-
ber. These are a special class of minimal wave
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packets, for which not only the minimum uncer-
tainty condition, AgAp =3, but also the condition
(AG)P +(ap)*=1holds. Here K=0, so that there
exists no uncertainty at all in the classical de-
scription. The classical analog is, therefore,
completely deterministic. The precise values of
q and p are given by g’ =2"Y3(a +a*), p'=- 272
Xile —a*), and the probability density is P(7,5)
=5(F —q’)5(p —p’). Obviously, all criteria for the
classical analog are satisfied.

The last type of pure state that we consider is
a minimal wave packet which is not a coherent
state, that is, Ag Ap =3, but (A9)*+(ap)*>1. In
this case, Aq Ap does not remain constant, as
for coherent states, but oscillates with frequency
4¢) above the value 3. It is useful to describe the
quantum state by its wave function in both the ¢
and p representation:

d(g) =0~V YV*expl - 30"%(q —q.) +ip q],
V(p)=o'2r 1 expl - 302(p —p ) —ig.p].

[The wave packet must be Gaussian®; the special
case of 0=1 is a coherent state with a =2""?(q,
+ip,).] We have, in this case, (9) =q,, ($)=p,,
8§ =30*, (Ap)*=20"%, V(§,p)=0, K*= (0" - 1)?

X (0*+1)"%, It is of interest to note the energy un-
certainty,

(AH)*= (iw)3(0%g, +07%,2) +5 (0* = 0~2)].
We consider, as the classical analog, the Gaus-
sian density

P@,p) =”—11{2 exp[ - glf((i:,_gl& o 'pl)zﬂ '

This yields (§) =q,, {p) =p, (a7 =3K%0", (ap)*
=3K3%0"%, V(G,p) =0, and the energy uncertainty
is given by
(AR ) = (Mw F3K*(0%q," + 0™ %p %) +5K*(0* +07%)].

It is seen that criteria (1) and (2) are satisfied,
As in the case of energy states, we consider on-
ly specific examples related to criterion (3). One
such example is the uncertainty in energy. In-
spection shows AH <AH. Other, particularly sim-
ple, examples are furnished by the functions g™
and p™. Quantum mechanically, uncertainties in
these functions are determined by the Gaussian
densities |(g)|® and |9 (p)|?, respectively, while
classically, they are determined by the same
densities narrowed by the factor K.

We discuss, now, mixed quantum states, which
may be defined by an ensemble of pure quantum
states, over which the average obtained from

each pure state is again averaged for the final re-
sult.® Formally, the mixed state can be de-
scribed by a diagonal density matrix, pieq
=37iPip;, where p; =y, X;|, the |9;)’s are an
orthonormal set of states, and p; is the probabil-
ity of finding the system in the state |3;). We fol-
low exactly the same procedure with the classical
analogs, and let the classical analog of the mixed
state be P(a’ﬁ)mixed :El‘pipi (6’5)’ where P,(&,ﬁ)
is the classical analog of the state |;).

The description of mixed states by a diagonal
density matrix in the representation of an orthog-
onal set of states has been extended to a descrip-
tion in a representation of coherent states, which
are only approximately orthogonal, in a certain
sense.” The density matrix in this “P represen-
tation” is given by

p=[[Pla,a*)a)ald®,

the integration being over the complex o plane.
For P(o,a*) positive, this density matrix may
be regarded as that of a mixed state. Its classi-
cal analog is described, in accordance with the
above procedure and the fact that the classical
analog of a coherent state is a § function, by
P(a,a*), with a =2"Y?(@F +ip). In this connection,
it is interesting to examine the mixed state for
which P(a,a*)= (27k)" 6(al —%), where k is a
positive constant. This is a mixture of coherent
states of energy expectation value (2 +3)/w and
uniformly distributed phases. The analog is a
microcanonical ensemble of energy k%w, the
same analog as that of an energy state if £? is in-
tegral. The resemblance of this state to an ener-
gy state should not be surprising, since the for-
mer is a stationary state with the same Ag and
Ap as those of the latter, for k*=x. However,
AH =Tiwk for the mixed state, while AH =0, of
course, for the energy state.

There exists a popular conception®® that co-
herent states are more “classical” than other
quantum states of the harmonic oscillator. In the
light of the present discussion, reasonable meas-
ures of “classicality” and “quantum mechanical-
ity” are given by C and @, respectively, where
C=(H)/(H) and Q = (&) - (&))/@). One sees im-
mediately that C=1— 7w /(A) and Q = 37iw/(H),
which is, essentially, a formulation of the corre-
spondence principle. We conclude, therefore,
that for a given (H), all types of states are equal-
ly classical or equally quantum mechanical. In
the present context, there exists no justification
for considering coherent states to be more clas-
sical than other states; all pure states (of given
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(H)) are equally “close” to their respective clas-
sical analogs.

The concept of “collapse of the wave packet”
may be given plausible interpretation in light of
the present ideas. Let a particle be in a given
initial quantum state. If an ideal measurement
is made of a dynamical variable of which the ini-
tial state is not an eigenstate, then the postmeas-
urement state will be the collapsed wave packet,
an eigenstate of the variable measured. Looking
at the classical analogs of both states, we see
one probability distribution collapse into another
on measurement. Now, such a change in a sta-
tistical ensemble is entirely consistent with clas-
sical probability theory, and represents a change
of information. Thus, the collapse of the wave
packet may be regarded as due to a combination
of a change of information (as far as the classical
statistics contained in the quantum description is
concerned) and to a disturbance of the system
(consistent with the minimal form of the uncer-
tainty principle) inherent in an ideal quantum
measurement.

'3. E. Moyal, Proc. Cambridge Philos. Soc. 45, 99
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