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Exact Algorithm for d-Dimensional Walks on Finite and Infinite Lattices with Traps
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An exact algorithm is formulated to calculate the expected walk length (n) for a
walker {atom, molecule) undergoing random displacements on a finite or infinite (peri-
odic) d-dimensional lattice with traps (reactive sites). The method is illustrated for the
case of a single deep trap surrounded by shallow traps and the calculated value of (n)
agrees to within 0.3' of the Monte Carlo result for all lattices considered. The theory
introduced is capable of generalization to many new classes of problems in lattice sta-
tistics.

PACS numbers: 05.40.+i

To investigate the interplay between spatial ex-
tent and dimensionality in influencing reaction-
diffusion processes, we have undertaken recently
a program of Monte Carlo calculation of random
walks on lattices with traps. ' ' In the course of
analyzing recent data generated in these studies,
we have found that a quite general algorithm can
be written down to predict the number (n) of steps
required before trapping (i.e. , the expected walk
length) on finite and infinite (i.e. , periodic) lat-
tices subject to a variety of boundary conditions.
Moreover, the method developed seems capable
of much further generalization so that although
we consider specifically the case of a deep trap
(trapping probability, T = 1) surrounded by N- 1
sites which may be partially absorbing (trapping
probability, 0 & s & 1), a great variety of other
situations seems accessible to analysis. The
method is based on a classification of the sym-
metry of the sites surrounding the deep trap and
a coding of the fate of the random walker as it
encounters a site of given symmetry. We illus-
trate the method using two simple examples and
cite a number of additional, representative re-
sults to show the generality of the method.

Consider a 5& 5 periodic lattice with a deep
trap (T = 1) at the center and N 1=24 su-rround-
ing sites, each characterized by a trapping prob-
ability s. From the symmetry of the unit cell, it
is seen that there are five "types" of lattice sites

(apart from the central trap); for definiteness,
we code these sites as follows:

Suppose now that the walker is situated at one of
the sites labeled 1 and let us denote by (n), the
expected walk length for a walk originating from
this site. Considering the simplest case first,
we suppose that the trapping probability s at this
site is zero. Now, there is one chance in four
that the walker will move one step to a site la-
beled 3. Assuming this has been realized, we
note that the walker, after having landed on this
new site, has no memory of ever having been on
the original site 1. The walker will continue his
walk just as if he had started from the site 3,
except that his walk length must be incremented
by the one previously taken step. So, taking into
account all four sites surrounding the site labeled
1, together with the attendant probability p =-,' of
a neighboring site being reached in a random dis-
pla. cement from the site 1, we conclude that the
following relation must hold:

(n), = —,
'

((n) r, + 1) + —,
' ((n), + 1) + —,

'
((n), + 1) + —,

'
((n), + 1).

Since the expected walk length from a deep trap (T = 1), (n)r, is zero this expression simplifies to

( &, = l!:1+2(( ).+ 1) + (( ).+1)1

A more general situation arises if one assumes that the labeled site 1 is characterized by a nonvan-
ishing probability of trapping (i.e. , 0- s &1). Then, the factor on the right-hand side of the last result
must be weighted by the further probability (1 —s). To account for the possibility that the walker is
trapped at the site 1 to begin with, we include the (normalization) factor s(lj. Overall, then, the de-
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sired generalization is

(n), = s f 1j + -,' (1—s )[1+2 ((n), + 1) + ((n), + 1)],

an expression from which one recovers the correct limiting behavior when one sets s =0 and s = 1.
Analogous expressions for (n)„.. . , (n), can be written down by inspection:

(n). =s (1)+-'(1-s)[2((n) +1)+2((n), + 1)],

(n) ~
= s( 1j + —,'(1 —s)[((n), + 1) + ((n) 3+ 1) +2 ((n)4+ 1)],

(2)

(n) 4
= s{1)+ 4 (1 —s)[((n)~ + 1) + ((n) ~ + 1) + ((n) ~ + 1) + ((n) 5 + 1)],

(n)5 =s(1]+-'(1 —s)I2((n), +1)+2((n&, + 1)].
(4)

(5)

As is evident, the above system (1)-(5) represents five equations in five unknowns which can be solved
via Cramer's rule to determine the quantities (n)». . . , (n), . Designating q = 4(l —s), the system is re-
duced to

—2q

-2q -q
0 —2q n2

n3

0 —2q 1 —2q 5in

in which form standard routines may be applied. Once the (n)„.. . , (n), are known, the overall ex
pected walk length (n) can be computed from

4(n), + 4(n) ~ +4(n) ~ + 8(n) 4 + 4(n),
24

The above procedure generalizes at once to d-dimensional lattices, and to boundary conditions other
than periodic boundary conditions [we report later results for confining (nontransmitting) and reflect-
ing boundary conditions], Thus, for the case of a 5x 5x 5 periodic lattice with a centrally located deep
trap and N- 1 = 124 surrounding sites each characterized by an absorption probability 0 ( s & 1, inspec-
tion of a three-dimensional model (we used Tinkertoys~ i) shows that only nine distinct sites need be
considered:

9 8 6 8 9

8 7 5 7 8

6 5 4 5 6

8 7 5 7 8

9 8 6 8 9

8 7 5 7 8

7 3 2 3 7

5 2 1 2 5

7 3 2 3 7

8 7 5 7 8

6 5 4 5 6

5 2 j. 2 5

4 1 T 1 4

5 2 1 2 5

6 5 4 5 6

8 7 5 7 8

7 3 2 3 7

5 2 1 2 5

7 3 2 3 7

8 7 5 7 8

9 8 6 8 9

8 7 5 7 8

6 5 4 5 6

8 7 5 7 8

9 8 6 8 9

The corresponding determinantal equation is then

-4q 0 -q
-2q 1 -2q 0

-3q 1

—2q

0

0 0

1 —q -4q

-q 1 —q -q
0 0 -2q 1-2q 0 2q

0

0 -q

0 0

0 0 0

1 —q 2q

-2q I —2q

-3q 1 —3q
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TABLE I. A comparison of results generated via
Monte Carlo simulation vs those generated via the
algorithm for d-dimensional periodic lattices with a
centrally located deep tqap (T= 1).

TABLE lI. A comparison of the results generated
via Monte Carlo simulation vs those generated via the
algorithm for d-dimensional finite lattices with a cen-
trally located deep trap (T = 1).

Lattice
NC

(n&
ALG

o ERROR Lattice Boundary Conditions
MC

ERROR

8 x 1

20 x 1

4 x 4

5 x 5

5x5x5

0.
0.1

0.
0.1

0.
0.1
0. 3

0. 5

0.
0. 01
0.1
0. 3

0. 5

0. 75

0.
0.01
0.1

11.96
5.501

70. 00

8. 223

18.26

6.656
2. 938
1.887

31.61
24. 18
7.701
3.082
1.925
1.318

157.5

61.23

9.420

12.00

5.491

70.00

8.233

18.31
6. 650
2. 933
1.885

31.67
24. 15
7.711
3.080
1.928
1.316

157.3

61.25
9.435

+ 0.33
0.18

0. 0

+ 0.12

+ 0.27

0.09
0.17
0.11

+ 0.19
0.12

+ 0.13
0.06

+ 0.16
0.16

0.13
+ 0.03
+ 0.16

The exact result (Refs. 4—6) for a linear chain, (n)
=N (N + 1)/6, leads to (n) = 12.00 in this case.

The exact result (Refs. 4-6) for a linear chain leads
to (n) = 70.00 in this case; this is the number entered
in the table.

The asymptotic estimate (Refs. 4—6) for a square
lattice, (n) = br 'NlnN+ 0.195056N-0.1170—0.051N '
+ O(N i) iN/(N 1), lead-s to (n) = 18.26 in this case.

The asymptotic estimate (Refs. 4—6) for a square
lattice leads to (n) = 31.63 in this case.

where here q = ~(l —s) and 1 is the unit vector.
We present in Table I a comparison of the re-

sults obtained using the exact algorithm described
here versus those generated in our full-scale
Monte Carlo simulations, for dimension one (the
Sx 1 and 20x 1 lattices), dimension two (the 4x 4
and 5x 5 lattices), and dimension three (the 5x 5
x 5 lattice). Here the lattices were assumed to be
periodic, with the deep trap (T = 1) centrally lo-
cated and the probability of trapping at all other
sites set equal to s. However, the algorithm ap-
plies equally well to boundary conditions other
than periodic ones; in particular, we may also
consider lattices of finite spatial extent. We list
in Table II results obtained for a 8& 1 lattice sub-
jected to confining boundary conditions (imple-
mented by the restriction that if the walker at-
tempts to step on the boundary it must return to
the lattice site from which it started) and a 5x 5
lattice subjected to reflecting boundary conditions
[implemented by the restriction that if the walker
attempts to step on the boundary it is displaced

8 x 1

5 x 5

confining
(non-transmitting)

reflecting

0.1

0.

5. 536 5.521 — 0.27

19.09 19.06 — 0.16
0.01 16.21 16.20 — 0.06
0.1 6. 883 6.880 — 0.04
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to one (interior) lattice point further removed
from the boundary than the lattice site from
whence it started]. In all cases, the differences
between the Monte Carlo results and the results
generated via application of the algorithm were
essentially negligible. What makes this especial-
ly remarkable is that, whereas the Monte Carlo
calculations are very expensive, implementation
of the algorithm requires hardly any time at all.
For example, to obtain (n) for the three-dimen-
sional, 5x 5x 5 lattice with a central, deep trap
(T = 1) and absorption probability at the other
sites set at s =0.1, the Monte Carlo simulation
required 270 minutes of central processing unit
time on an IBM 330 (9000 walks initiated from
each site were required to produce good histo-
grams); use of the algorithm, i.e. , solution of
the determinantal equation (6), required 1.74
seconds.
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