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The validity of (2) for large f (or y) is already
implied by the linearized BE. Our results strong-
ly support the conclusion that (2) holds for all n,

and J ~0.
Note that the approach to equilibrium for the

distribution function itself, f(v, t), is not mono-
tonic since for some values of v, 6f/3v changes
sign at a certain point in time. Yet the H function
is monotonic in all the derivatives that we calcu-
lated. The solution, (3), starts off very far from
equilibrium with no particles of zero velocity.

This is the first solution of the true BE that has
been shown to satisfy (2) to such high order of
differentiation. We present our results in the
hope that they will stimulate further work that
will yield a rigorous proof of (2) for the solution
that we have considered.
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A self-consistent effective-medium approximation is presented for the problem of dif-
fusion and ac conductivity on a lattice characterized by random values of transfer rates
between pairs of nearest-neighbor sites. The approximation is applied to a percolation
model in which only a fraction of the bonds are assigned a finite transfer rate. The re-
sults reflect the existence of a, percolation threshold in the system, and are consistent
with the properties of clusters of bonds in the critical region.

PACS numbers: 05.60.+w

There is a rapidly growing interest in the prob-
lem of classical diffusion in random systems. '"'
It is relevant to a number of physical processes
in disordered media such as dispersive hopping
transport in amorphous semiconductors"' and
the migrations of localized electronic excitations
among guest molecules in a host." The main
current theoretical approach to these phenomena
is based on the continuous-time random-walk the-

ory.""'Alternative methods were recently
used to study the problem of one-dimensional
systems where some aspects of it can be treated
more rigorously. "'

In this communication a new self-consistent
effective-medium approximation (EMA) is pro-
posed for the related problem of diffusion on a
lattice characterized by random values of trans-
fer rate 8'„.„=TV„„.between pairs of nearest-
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neighbor sites. These values are assigned to the
lattice bonds according to a given probability dis-
tribution function n'(W) in a random manner. The
approach presented here is closely related to the
effective-medium theory (EMT) for the macro-
scopic conductivity and dielectric properties of
random inhomogeneous media, "and to the co-
herent-potential approximation (CPA) for the
electronic properties of alloys. "'

For a given realization of the random lattice
the diffusion process is described by the following
master equation for P„(t), the probability to be
at site e at time t. Given that the diffusing quan-
tity is at n=0 at time t=0,

BP„(t) =g [w„„,p„,(t) —w„,„p„(t)]

with the boundary conditions P„(t=0)= Q„„and
with n' the nearest neighbors of n.

Consider the Laplace transform of Eq. (1),

P [w„„,p„,(~) —w„,„p„,(~)]

A(4) =Elk) [(w+ZW; )5 &- W &](l I,

where the summation is over all pairs of nearest-
neighbor sites.

All the information concerning the diffusion
process can be derived from {(P„((u))],where
the angular brackets denote an average over the
ensemble of random lattices. For example, the
mean-square displacement of the diffusing quan-
tity from the origin at time t is given by

(R~(t )) = g '[g (P„(cu))R„'],

where 8„ is the location of site n and g ' denotes
inverse Laplace transform. Accordingly what is
needed is an approximation to (A(e) ').

A(&u) can be represented as a sum of a homo-
geneous term and a term which contains the ran-
dom fluctuations:

A(co) =A~(~)+ 5A(~),

= ~P„(~)+6„~,P„(0).

Here

P„(~)= fe 'P„(t)dt.
Equation (2) can be recast as the following ma-
trix equation,

A~(~)=BI~&[(~+~w„)5»—w, ~»]&f I

5A(~) =+2(w„-w„)q„,

Qgg= ~ (I&& —If&)(&&( —(f (),

(9b)

A(~)P(~) = 8,

where, using bra-ket notation,

(4) (9d)
1 if k, l are nearest neighbors,
0 otherwise.

A ' can now be expressed as a t -matrix expan-

P(&u) -=QP„(~)
~
n),

S=Q 5„,(n),

sion
(5a)

(5b)
where

A —A~ +A~ TA~

T[A~ ')=&t»+ & tliAu 't .+ 2 t»A~ 't .Au 'fp,
k1 k1 &mn k limn

mn&Pq

and the t matrix for the bond kl is

"'1—-'((~l-(E I)A. '(I»- If&)(w, —w„)
The effective-medium approximation is obtained by setting

and solving the following equation for W„(v) (Ref. 14):

( t „)=—( t ) = f f (w', w „(~)) n (u ') dM ' = 0.

As discussed below this equation leads to the vanishing of ( T(w„(~))) through the third order in t

(14)
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W~(~) —W '
W'[1- eGD(e)]+ [2z —1+ eGD(e)]W~(&u

=0

(17)

where G,(e) —= &O~A„'(W„(cu))
~
0) is the diagonal

element of the lattice Green function at e= &a/

W„(&u), '6 and z is the coordination number of the
lattice. For a cubic lattice in d dimensions G,(&)
is given by

G (e) = f, exp[ —(2z+ e)x] [I,(x)]"dx,

where I,(x) is the modified Bessel function of or-
der 0.

The mean-square displacement &R'(t)) and the
frequency-dependent conductivity o'(&u) for the
hopping transport on the lattice are related to
W„(e) by the following relations':

&R'(t)) = 2 '[(z/e')W„(&u)],

o(~) = 2 z W„(i~) (18)

The approximation presented here has the fol-
lowing features as a version of CPA or EMT:
(a) The condition &t) =0 leads to the vanishing of

(15)

Equation (15) implies that the ensemble averages
&P„(&u)) obey the following equation":

ZW~(&)[&P. (+)) —&P.(&)&]=~&P.(~)& (16)
n'

Using Eq. (12) one is led to the following equation
for W„(m):

the averages of the next two terms in the expan-
sion of T given by Eq. (11). This result is due to
the absence of correlation between values of 8"'
assigned to different bonds, together with the re-
strictions on the summations in Eq. (11). The
first nonvanishing term in & T) ~A is thus Q(t ).
(b) Since this scheme is based on expansion in t
matrices (rather than expansion in 5A) it is not

perturbative and thus not limited to weak disor-
der. (c) The corrections to the effective-medium
approximation can be estimated by studying the
nonvanishing terms in T~A." The approximation
is also amenable to systematic improvement by
going beyond the single-bond approximation im-
plied by Eq. (13) and solving T=0 up to a higher
order in t than t'."

For &u =0, Eq. (17) reduces to an equation equiv-
alent to the EMT for the dc conductivity, and it
yields a result for the diffusion coefficient, D
= —,'zW„(0). The limits of validity of the EMT for
the disordered resistor network have been studied
by comparison with numerical results. ""It was
found to be a good approximation even for rather
broad distributions of local transfer rates n(W').

An interesting example for which one can ob-
tain some analytical results from Eq. (17) is the
case of a disordered lattice with the following dis-
tribution,

&(W') =p 5(W' —Wo) +(1 -p) 5(W'),

i.e., the case where a fraction (1-p) of the bonds
are characterized by a zero transfer rate. Using
the asymptotic expression for G,(e) for c«1 for
a simple cubic lattice in Eq. (17) one obtains the
following results for W„(&u):

-W. '(P-P, ) '. (22)

W~(p, (u) =:
a

~
1 a

Ba 18 W,(P —P,)') '

in the small &@limit, w «Wo(p —p,)'. Here p, = —,
'

and a =G,(0).
An analysis of the long-time diffusive behavior

based on Eq. (20) leads to the following results:
(a) In the limit of large t,

&R'(t)) =Dt, Do-W, (p -p,) for p &p, ,
(21)

lim&R'(t)) 0-a/(p, -p) for p(p, .
gazoo

(b) For both p&p, and p «p, the above asymptotic
behavior is obtained for t» v where ~ diverges as

(20)

These results reflect in a qualitative manner the
properties of the clusters of bonds of one type on
a lattice with a percolation threshold at p =p, .
Below p, the mean-square cluster size is finite
and diverges as P -P, . This is consistent with
the divergence of &R'(~)) and of ~ as p -p, .
Above p, the infinite cluster can be viewed as a
sparse lattice of nodes connected by tortuous one-
dimensional channels where the distance between
nodes is of the order of the correlation length
$-(P -P,) '. This picture, proposed by de
Gennes, "suggests that the time of approach to
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normal diffusion, 7, will diverge as p -p, .
At the percolation threshold P =P,

W„(~)= (a~/W, )' '. (23)

the U. S. Air Force Office of Scientific Research
under Grant No. 78-3522.

At long times one obtains anomalous diffusive
behavior of the type

«'(t)& (W.t)' '. (24)

The expressions for W„(~) in Eqs. (20) and (23)
can be recast in the following scaling form:

W.(P -~„)=W.(t -P.)"f(y),
y=a~W, 'lP -P, l

(25)

A similar scaling form near p for an analogous
problem has been suggested by Stephen. "

Equation (25) leads to the following general
time-dependent diffusive behavior near the per-
colation threshold:

(J~'(t)&=f)t, D W,(P-P.)",
p)p

»m(f~'(t)& "alP-P. I
" "', (26)

-W. 'lP-p. l 7, P.~., t»;
and atP =P, ,

(R'(t)& (W t)'7 '~' 7. (27)

The EMA value for the percolation conductivity
exponent is t, =1 while y~= 2. The numerical
values for t, are -1.6 in d=3 and 1.1-1.3 in d
=2.""A scaling law y=t, +2@-P, where P is
the percolation probability exponent, has been
proposed. " Accordingly y —= 2.8 in d = 3. Thus
the EMA results follow the correct scaling be-
havior but yield incorrect values for the expo-
nents. One can expect the EMA to be more ac-
curate away from the critical region or for ran-
dom systems with distributions n(W') which do
not lead to critical behavior.

Work is presently in progress to obtain results
for various distributions m(W'). Numerical stud-
ies intended to assess the range of validity of the
effective-medium approximation in various cases
will also be carried out.
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