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The generalized H theorem, (-d/dt )"H & 0, is verified for n ~ 30 for the Bobylev-
Krook-Wu solution of the Boltzmann equation, and for d-dimensional generalizations of
that solution, 1~d & 6.
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(-1)"d"H/dt" -0, n= 1, 2, 3, . . . , (2)

If this very strong result were proven to be true,
it would imply that the approach to equilibrium
for the nonlinear BE is "infinitely smooth, "with
no oscillations or change in sign in any deriva-
tive. As McKean has conjectured, this "super
H theorem" might also serve the purpose of dis-

According to the II theorem of Boltzmann, the
approach to equilibrium for any solution f(u, t)
of the Boltzmann equation (BE) is accompanied
by a monotonic decrease in the value of the B
function, which is defined by

H(t) —= Jf(v, t) lnj(v, t}dv.

Thus dH/dt -0, equality holding for equilibrium.
A possible extension of the B theorem, first dis-
cussed by McKean' and Harris, ' states that all
derivatives of H(t) approach their equilibrium
value of zero monotonically, or equivalently that
the successive derivatives of H alternate in sign:

tinguishing the H function defined in (1) from a.

large class of functions that also lead, monoton-
ically, to the correct value of the entropy when
equilibrium is attained and thus would make (1)
the unique definition of an off-equilibrium "en-
tropy" functional.

The validity of the alternating derivative prop-
erty has been examined in many situations.
Harris, ' ' Simons, "Shear, McElwain and
Pritchard, "Yao, " and Rouse and Simons"'"
have verified (1) for various restricted kinetic
models, both linear and nonlinear, in some cases
for all n, while in other cases for just a few val-
ues of n. The validity of (2) for the linearized
BE, which is valid close to equilibrium, has been.
proven for all n"' On the other hand, for a
solution of the Bhatnagar-Gross-Krook (BGK}
equation for Maxwell molecules, Simons" has
found that (2) fails for n= 11. We also note that,
in a discrete model, Maass" has found a counter-
example to the conjecture that (2) implies H uni-
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quely. A related question that has been examined
is whether, in near-equilibrium transport proc-
esses, the thermodynamic entropy satisfies an
alternating derivative property analogous to Eq.
(2). Simons" "has shown that for many physical
processes, such as heat conduction, the entropy
is convex (S~ 0). However, for the actual, spa-
tially homogeneous BE, neither a general proof
of (2), nor a counterexample, has been found.
Indeed, the only models where (2) has been shown
to hold for all n are very simplified caricatures
of the BE.

In this Letter we consider the verification of

(2) for an exact solution to the BE. Of course,
while a counterexample to (2) would disprove it,
a particular solution that is shown to satisfy (2}
only lends support to the conjecture. On the
other hand, the investigation of the H function
of any exact solution of the BE is of considerable
interest in itself, illuminating the way in which
the gas described by the BE relaxes into equili-
brium from the particular initial state that cor-
responds to that solution. We consider the exact
solution of the BE, for a system of Maxwell
molecules, found by Bobylev" and by Krook and
Wu" (BKW). Rouse and Simons" have shown that
(2) is satisfied for this solution, for n = 2 only.
We derive a general expression for the nth deri-
vative of H for the BKW solution that allows (2)
to be tested for all n, although to determine the
sign of the derivatives, numerical calculations
are required. More generally, we consider a
d-dimensional generalization of the BIGV solu-
tion, ""which includes, when d = 2, an exact
solution of the Tjon-Wu model. '4

The d-dimensional generalization of the three-
dimensional BIQV solution is given by" "

U(a, b, z) =z' 'U(1+a —b, 2 —b, z),

we find an alternative expression for (5):

(7)

dH d(d+2) " xe '*dx

dt 4(e' i)' (i +x)'""
d(d + 2)

4( t i)2 1 d(y} &

where we define

u„,(y) -= &ne -yxd&

(1 ~x)2 +2/2

which is more convenient than U. Now because
(e' —1) ' has the alternating-derivative property,
and because products of functions with this prop-
erty also have this property, it is sufficient to
prove that h, defined by

in d dimensions equals 2tt' '/I'(d/2) has been
used. Inserting the f of (3) into (4) we get an ex-
plicit expression for H, but because of the loga-
rithm, the integral cannot be performed in closed
form. A substantial simplification occurs upon
differentiating H with respect to t, rearranging
terms, and integrating by parts. We find

dH - x""'e-"d
r(d/2)(et —1)' (x+y)' (5)

where y =-e' —1 —d/2. The requirement that t
~ ln[(d+2)/2] implies simply y ~ 0. This integral
can be expressed as the hypergeometric function

U, defined by"

I'(a)U(a, b, z) =- f e "t' '(1+t)' ' 'dt. (6)

Applying Kummer's transform, "

exp(-v'/2n) 2n —d +dn v' 1 —n

(2tTn) "t2 2n 2 n'
dh—-= u„,(y)

satisf ies

(io)

where @=1—e '. The time, t, has been scaled
by a constant, A, , which depends upon the angular
dependence of the differential scattering cross
section (which is assumed to be inversely propor-
tional to the relative velocity). The requirement
that f be positive implies that t ~ ln[(d+2)/2].

Transformed to the variable x = v'/2, (1) be-
comes

d"h
( -1)" „ 0, n = 1, 2, 3, . . . .

Differentiating (10), one finds that

d'h
, =-e'u, , (y) ~0,

, =-e'u, „(y)+e"u, „(y),

(i2)

where the fact that the surface area of a sphere
d" h

n-i
„= P (-1)'e"a, „u,,„,(y),

t =I
(14)
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where the positive a,. „satisfy

with a, =1 a =0 ~&

1, »»»»4n (n=2» 3» 4». . . ) . Although

, is c early negative,the second derivative (12) i l
the sign of the higher derivatives is not obvious.
We shall find their siin eir sign by numerically evaluatin
the terms of (14).

ing

For each valualue of t or y, we must calculate the
Q g Firs +p g is calculated it i l t's re aedto

e incomplete I" function or (for even d) the ex o-
nential integral:

n e expo-

u, ,(y) =e'y"' '1'(-1- d/2, y)

small and
which can be evaluated by series expa fnsions or
sma y and by a continued-fraction series for

large y." Then the u„„ follow by

yu»»+y d(y) =+un» g(y) +(~ -y —1 - d/2)u y)un, ~ &

which results from (9). Wh =0,en n =, the term
nu„, „should be taken as 1. Aft er calculating the
a,. „by the recursion relation (15), the expres-
sion for the derivatives of h (14), may be eval-

We carried out the above procedure, for d =

g wide range of y, and for n up to 30.
or =1

Because of the cancellations that occur with the
alternating terms of (14)» we utilized douMe

ignificant to 33 figures. We find that the
ou e pre-

McKean conjecture is sat sf d fi ie or all cases that
we considered. For exam l thp e, e results for d
=3 are shown in Fig. 1 where th f'e irst twenty
derivatives of h are plott de as a function of t.

(a) I
030-

I
OZO

I
0'0-

1.0-

I

I.p 1.5
f

I I I

.0 2.5 3.0 3.3.5
TIME

I
I »

4.0 4.5

-I.p

1.0 1.5 2.0
I I I I

2.5
TIME

3.0 ' 4.0 4.5

1010 .

1020.

1030.

1040

FIG. 1. 1. The nth derivatives of k plotted as ap o e as a function of t, for (a) n odd, and (b) n even
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The validity of (2) for large f (or y) is already
implied by the linearized BE. Our results strong-
ly support the conclusion that (2) holds for all n,

and J ~0.
Note that the approach to equilibrium for the

distribution function itself, f(v, t), is not mono-
tonic since for some values of v, 6f/3v changes
sign at a certain point in time. Yet the H function
is monotonic in all the derivatives that we calcu-
lated. The solution, (3), starts off very far from
equilibrium with no particles of zero velocity.

This is the first solution of the true BE that has
been shown to satisfy (2) to such high order of
differentiation. We present our results in the
hope that they will stimulate further work that
will yield a rigorous proof of (2) for the solution
that we have considered.
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A self-consistent effective-medium approximation is presented for the problem of dif-
fusion and ac conductivity on a lattice characterized by random values of transfer rates
between pairs of nearest-neighbor sites. The approximation is applied to a percolation
model in which only a fraction of the bonds are assigned a finite transfer rate. The re-
sults reflect the existence of a, percolation threshold in the system, and are consistent
with the properties of clusters of bonds in the critical region.

PACS numbers: 05.60.+w

There is a rapidly growing interest in the prob-
lem of classical diffusion in random systems. '"'
It is relevant to a number of physical processes
in disordered media such as dispersive hopping
transport in amorphous semiconductors"' and
the migrations of localized electronic excitations
among guest molecules in a host." The main
current theoretical approach to these phenomena
is based on the continuous-time random-walk the-

ory.""'Alternative methods were recently
used to study the problem of one-dimensional
systems where some aspects of it can be treated
more rigorously. "'

In this communication a new self-consistent
effective-medium approximation (EMA) is pro-
posed for the related problem of diffusion on a
lattice characterized by random values of trans-
fer rate 8'„.„=TV„„.between pairs of nearest-
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