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Resistivity and Relaxation in Spin-Glasses
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The electrical resistivity of spin-glasses is discussed in terms of the elementary
excitations of Walker and Walstedt, and excellent quantitative agreement with experi-
mental data is obtained. With the same model an explanation for the local spin relaxa-
tion time behavior in spin-glasses is also given.

PACS numbers: 72.10.Di, 72.15.-v, 75.30.Hx

Among basic physical properties of spin-glass-
es which remain to be fully understood is the
electrical resistivity, despite a number of theo-
retical studies. ' ' Here I give a simple picture of
a spin-glass which can be used to relate directly
the electrical resistivity and the excitation den-
sity of states. With the excitation density of
states determined numerically for a Huderman-
Kittel-Kasuya- Yosida (RKKY) spin-glass by Walk-
er and Walstedt, ' I obtain a calculated resistivity
curve in excellent agreement with experimental
results over the entire temperature range from
1 to 300 K. The local spin relaxation time in the
light of the same approach is also discussed.

In a pioneering paper, Yoshida' discussed the
resistivity of metals containing dilute magnetic
impurities. He showed that if the conduction-
electron-impurity interaction is V-2ZS s, then
at temperatures well above any ordering the im-
purity resistivity is

p „=Ac [ p'+ O'S(S+ l) j,
where c is the impurity concentration and A. is a
constant. At zero temperature in what is now
known as the spin-glass phase, the spin disorder
is as high as in the paramagnetic state but the
spin-flip scattering is frozen out, so that the re-
sistivity becomes

p, = A.c( y'+ z'8').
The problem is how precisely the system passes
from one limit to the other.

The overall Hamiltonian for N moments partici-
pating in a spin-glass is of the form

x=Qz, ,s,. s, ,

with the 4,, chosen at random according to some
recipe within the range —

j 8 (
& J,.~

&
) J ( . .Assum-

ing that the J,, are known, one can imagine a
Gedankenxecknung where BC is diagonalized direct-
ly. For N spin- & moments this diagonalization
implies resolving a 2" & 2~ matrix, and so this

is an insuperable problem in practice as soon as
N&10; however, we can get quite a reasonable
intuitive idea of the shape of the density of states
for the energy levels of the whole system. The
distribution will contain 2~ states; it will be
symmetric (as replacing all J,, by —J;z inverts
the distribution) and roughly Gaussian in shape.
Calculations for N & 7 bear this out. In fact what
is important for the low-temperature behavior of
the system is the shape of the wing of the distri-
bution, beginning at the lowest energy point,
which will be defined as the ground state and the
zero of energy.

We will now turn to the very instructive calcu-
lation of Walker and Walstedt, who treated nu-
merically a spin-glass Hamiltonian with the as-
sumption of HKKY interactions between the spins.
They first found a ground-state configuration,
and then derived a density of states P(h) for the
N elementary excitations of the system as a func-
tion of the energy Now if the excitation con-
cept is valid, in the low-energy wing of our dis-
tribution of energy states of the whole system we
will be able to make the identification that each
state of the whole system corresponds to a given
set of occupation numbers of the elementary ex-
citations. If excitation i is excited n,. times, then
(n„n„.. .) defines one state of the whole system.

Now to calculate the resistivity I make the fol-
lowing assumption: The inelastic electron scat-
tering processes consist of energy-conserving
collisions in which one magnetic excitation is
created or destroyed; the interaction strength is
assumed the same for all excitations. In the low-
energy wing this gives us selection rules for pass-
ing from one whole-system state to another. Qn
average, the scattering rate for transitions from
the states around energy E to the states around
energy E+6 will depend only on the excitation
density of states P(D) together with a tempera-
ture-dependent factor expressing the energy con-
servation. This selection rule is strictly valid
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only in the low-energy wing but I will assume that
it works over the entire distribution of whole-sys-
tem states. This is physically plausible as we
are dealing with averages, and it allows us to
make an explicit calculation.

The energy-conservation requirement for scat-
tering of eonduetion electrons is well known. ' The
rate for scattering between a state of the system

at energy E and a state at energy E+& is propor-
tional to n (E)b./[exp(&/AT) —1] times the selec-
tion-rule factor. n(E) is the occupation probabil-
ity of the state at E. Since the resistivity is pro-
portional to T ' times the scattering rate and with
the selection-rule assumption made above, the
total inelastic resistivity p;„(T) for the system
will be

~P(~)
~ exp(L/kT) —1' (2)

0,2

E
LJ

O

0.1
I—

0

~(E)/exp(F/uT) P(~)(~/I T)
(Q iv(E)/exp(E/kl)~ exp'(s/kT) —1

The sum over the states drops out, leaving the
remarkably simple expression

P (~) (~/aT)
~ exp(~/kT) —1

'

This p;„(T) will have positive slope at all tem-
peratures and will tend to saturate as T —. We
now only need to know the excitation distribution
P(b.) in order to calculate p;, (T) at all tempera-
tures. Using the P(6) determined by Walker and
Wolstedt I have calculated p;, (T) and compare it
with the observed p(T) for AuFe(1%) ' in Fig. 1.
The vertical scale is fixed by the experimental
room-temperature value of p(T) and so the only
free parameter is the energy scaling for P(/). ),
which I have chosen appropriately. Specific heat
data could also have been used to estimate this
scaling; the total energy of the system of excita-
tions (obeying Bose statistics) is

Comparing this with Eq. (1), we note that in the
excitation regime, if the assumptions made so
far are valid and with one excitation per magnetic
atom, we should find the following exact relation-
ship between the specific heat and p; „(T):

C(T Rd[TP()) (T)/P
T

Figure 2 compares the experimental magnetic
specific heat for AuFe(1%) ' with a curve for
Ad[Tp(T)/p„]dT deduced directly from resistivi-
ty data for the same alloy. ' Equation (3) is well
obeyed.

In both Figs. 1 and 2 the predictions of the pres-
ent model are strikingly confirmed. This pro-
vides strong evidence in favor of the excitation
approach, the Walker and Walstedt calculation,
and the assumptions made here. As the resistivi-
ty is a parameter which is considerably easier to
measure with precision over a wide temperature
range than is the specific heat, a detailed investi-
gation of p(T) in different metallic. spin-glasses
would be well warranted, in order to obtain in-
formation on the excitations in different systems
and at different concentrations.
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FIG. 1. Resistivity as a function of temperature for
Au Fe{1%). Circles, experimental results, Ref. 7.
Full curve, calculated using Eq. {1){see text).

FIG. 2. Magnetic specific heat of AuFe{1%). Circles,
experimental results, Ref. 8. Full curve, calculated
from experimental resistivity results of Ref. 7 using
Zq. {3).
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FIG. 3. Local spin correlation time in Au Fe(1'7()).
Vertical bars, experimental results, Ref. 9. Full
curve, calculated using Eq. (4) (see text).

processes are mixed together to form the excita-
tions of the system, relaxation of single spins re-
quires excitations taken from over the whole en-
ergy spectrum. As a first approximation, we can
expect v

' to be proportional to the relaxation
rate corresponding to the average excitation:

~ '~a/(e "r-l), (4)

where Z =Q&P(&)/QP(&). At low temperatures
this will obviously vary much more rapidly with
temperature than does Tp(T), which is dominated
by the lowest-energy excitations.

I have calculated ~ ' for &u Fe(1%) using the
same P(A) and energy scaling as for p;„(T). The
result, Fig. 3, is in good overall agreement with
experiment.

cwork in progress suggests that the approach in
terms of whole-system states and excitations can
help to understand quantitatively a wide range of
other spin-glass properties, such as the macro-
scopic relaxation processes and even the exis-
tence of a spin-glass ordering temperature.
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The present results can help to understand
other spin-glass properties. One example is
given here. Muon depolarization measurements
have been used to obtain the local spin relaxation
time in a number of spin-glasses. ' Naively one
might imagine that as p;„(T) is proportional to
7 times the average spin-flip scattering rate,
we should find the local spin relaxation rate 7

proportional to Tp; „(T). This is far from being
the case: At low temperature r ' varies much
more rapidly than Tp;„(T).' The physical reason
appears to be as follows: The relaxation time to
which the muons are sensitive is the relaxation
of single local spins; as the elementary spin-flip
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