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>1 over most of this temperature range. How-
ever, except at very small angles of incidence
large k implies large K since k>k,, and there-
fore, through the integral of G(X), phonons with
k<1 are emphasized.

In conclusion, I have shown the following: (1)
When surface roughness is taken into account the
acoustic mismatch theory is in excellent agree-
ment with Kapitza conductance measurements on
Cu-%He, Cu-~*He, and NaF-He, at temperatures
T>0.2 K. (2) For large impedance mismatch the
calculation is only weakly dependent upon the
properties of the liquid. This explains the weak
pressure dependence observed for “He and *He
interfaces as well as the similarity of experi-
mental results for “He, *He, and other low-im-
pedance materials. (3) The two channels invoked
by Wyatt and Page'* are just 2x*™ and &y, (4)
From Eq. (5) and what followed, the frequency
distribution of the scattered radiation is angle
dependent and generally not the same as that of
the input. This “filtering” effect can partially
explain the apparent inelastic scattering observed
in some heat-pulse experiments.

I wish to thank Professor A. C. Anderson for
informing me of the measurements reported in
Ref. 8, and Professor Klaus Dransfeld, who point-
ed out the importance of the weak pressure de-

pendence to theory.
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Frustrated Spin-Gas Model for Doubly Reentrant Liquid Crystals
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A mechanism, based on the competition between short-range positional order and long-
range antiferroelectric order, is presented for reentrant liquid erystals. Antiferroelec-
tric frustration is inherent to the triangular close packing of layers normal to the molec-
ular axis, but is lifted at intermediate temperatures by positional disorder. Phase dia-
grams evaluated by using prefacing transformations include the doubly reentrant case
exhibiting, as temperature is lowered, nematic, bilayer smectic, reentrant nematic,

and monolayer smectic phases.

PACS numbers: 64.70.Ew, 61.30.Cz, 77.80.Bh, 05.70.Fh

The reappearance'™ in certain liquid crystals
of a nematic (less ordered) phase as temperature
is lowered from a smectic (more ordered) phase
is an a priori unexpected phenomenon which re-
quires microscopic explanation. Although the im-
portance of dipolar interactions in such systems
has been empirically established and stressed,!

a microscopic mechanism explaining the occur-
rence or nonoccurrence of a macroscopic phase
through many-body correlations, and making pos-

© 1981 The American Physical Society

sible quantitative calculations of phase diagrams
and other observable properties, has been lack-
ing. We propose such a mechanism based on the
competition between short-range positional order
and long-range antiferroelectric order, and on

the mismatch between the optimal dipolar permea-
tion length and the atomic length scale. Starting
from a particulate picture with microscopic po-
tentials, calculations are performed by using a
special prefacing® transformation which could
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FIG. 1. Positional configurations of a layer normal
to the molecule axes. Molecular dipoles which are
pointing into or out of the figure, or which are frus-
trated, are respectively indicated by crosses, closed
circles, or question marks. Strong (weak) bonds are
shown with full (dotted) lines. Permeation fluctuations,
not seen here, similarly relieve frustration.

also be useful for other fluid or glassy systems
where local distortions are important. Our cal-
culated phase diagrams include reentrant as well
as doubly reentrant cases.

We begin with an intuitive explanation of the
mechanism, to be made quantitative further on.
Consider the two-dimensional array of molecules
intersected by a plane normal to the average mo-
lecular axis, in either the smectic or the nematic
phase. As in the experimental systems with re-
entrant phase diagrams, the molecules are taken
to have an aliphatic tail and a polar head along
the molecular axis. First, for the sake of argu-
ment, consider the limit of complete positional
order [Fig. l(a)]. The close-packing arrange-
ment in two dimensions is triangular. The inter-
action between the dipoles is antiferroelectric,
but an antiferroelectric long-range order cannot
be supported® because each elementary triangle
of the array is frustrated.® However, we are
actually dealing with a liquid, with positional dis-
order. If the local distribution is like Fig. 1(e)
with one weak and two strong bonds, frustration
will be lifted, and two-dimensional antiferro-
electric order can propagate across the unit. On
the other hand, if the elementary triangle is like
Fig. 1(c), with one strong and two weak bonds, it
will still be frustrated, and at most a one-dimen-
sional antiferroelectric correlation can propagate
across, which is not sufficient for antiferroelec-
tric ordering. Actually, in any given snapshot

of the layer, each elementary triangle is between
these two cases, with one strong, one intermedi-

HIK ] = sinh2K, sinh2K, +sinh2K, sinh2K, + sinh2K, sinh2K ,=1
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ate, and one weak bond [Fig. 1(d)]. Whether the
intermediate bond is closer to the strong one or
to the weak one determines the ordering charac-
ter of the unit. [This is made quantitative in Eq.
(2).] If there are enough of the former type of
units, they will percolate across the system and
form an infinite network (“polymer”) of position-
ally disordered, but antiferroelectrically ordered
molecules [Fig. 1(b)]. Each layer, consecutively
along the z direction, will have its own network.
These networks will not pass through each other
because this would involve disrupting infinitely
many strong bonds. The result is the density
modulation along the z axis, namely the smectic
phase. Note first that, even in the presence of the
networks (which indeed should have zero weight
close to the nematic phase), many antiferroelec-
trically ordered but finite clusters (“»-mers”)
slide up and down the z axis and give the constant
background to the smectic modulation. Second,
although the percolating network must be sus-
tained for the smectic modulation, individual
molecules join it and leave it as time progresses.
Finally, as the system is further cooled, it is not
unreasonable that local positional order will set
in, turning on frustration, eventually destroying
the network, and reentering the nematic phase.

Calculations are performed with molecules in-
teracting via the potential

V(£y,8,,T,,3,)

=[A§1 8, =3B(5, - 7,5) (5, ’?12)]/l ;12‘3”

¢y

where T; is the position of molecule i, §; =+1 is
the orientation of its dipole along the z axis, T,
=Y, ~T,, and #,,=1,,/|T,,|. For purely dipolar
interaction, B/A =1, Tail-tail interactions are
simply taken into account by letting this ratio be
less or greater than one, respectively, corre-
sponding to tail-tail interaction dominated by
steric hindrance or van der Waals attraction.
More complicated potentials can and have been
used within our method, without qualitatively af-
fecting the results.

The simplest treatment of (1) is by a prefacing
transformation, which restructures a given sys-
tem onto another more readily solvable one via
partially carrying out the partition sum.* First,
we discuss the model onto which this mapping is
done. For an Ising (s; =+ 1) antiferromagnet on a
uniformly distorted triangular lattice, e.g., with
couplings -BJ,=K,, K,, and K, along the three
directions, Houtappel’ showed that
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is the criticality condition, where K, are obtained
by pairwise inverting signs of K (i.e., relabeling
s;j—~—s; every other row of spins) until the two
largest magnitude couplings are positive. The
ordered (disordered) phase occurs at H[K,]>1
(<1). Further, the exact position-space renor-
malization group of Hilhorst, Schick, and van
Leeuwen® shows that, when the Houtappel condi-
tion is locally satisfied, H[K,(F)]=1, it remains
so under rescaling. The latter is, to our knowl-
edge, the first exact result of its kind for a non-
trivial system with quenched bond disorder. It
requires a quenched bond distribution whose con-
tinuum limit can be taken, namely K (r) varying

smoothly with T on the scale of lattice spacing.
We claim that the phase boundary of such a sys-
tem is a very good approximation for that of a
system with annealed bond disorder, as in the
liquid-crystal problem. Thus, when the Houtap-
pel condition is satisfied, on the average, by the
K, of the elementary triangles discussed earlier,
a good approximation to the phase boundary should
be obtained.

The prefacing transformation is effected in a
finite-cluster approximation,® by considering
three molecules of the layer defined above and
summing over the positional degrees of freedom
to obtain effective spin interactions:

C exp(K s5,5, +K $,85 +KyS3S,) =f(dV) exp[‘BVs(fus1 s-fzssz) ‘BVIGz, 32;;3’53) _BVWG:;’SS’;D Sl)]- (3)

The positional degrees of freedom summed above
should include lateral displacements from the
average positions within the layer and permeation
displacements out of the layer (in the z direction).
The latter degrees of freedom are much softer
and therefore much more important. In fact, we
have performed the calculation including just the
lateral displacements, a boundary condition of a
fixed cage of nine other molecules, and a Len-
nard-Jones potential in addition to (1). The quali-
tative shape of the resulting phase diagram did
not match the experiments, as could be expected.
Thus, all results reported below include only the
important permeation fluctuations. Phase dia-
grams which are not qualitatively different are
obtained by including both types of fluctuations,

at the expense of increased computational burden.

From the definition of a layer, the permeation
displacements span +//2, where ! is the molecu-
lar length. Because of the unsmooth molecular
architecture, there are n preferred notches along
this length, separated by [/n, where x is of the
order of the number of carbons in the tail. At
each notch, a permeation of + § <//n accounts for
molecular libration.

Most importantly, we have already noted that
the instantaneous distortions from equilateral tri-
angular symmetry cause the long-range antiferro-
electric order. These distortions are projected
in (3) by always labeling s, and s, the spins
coupled with the strongest antiferroelectric inter-
action, itself denoted by the subscript S. The
spins s, and s, are those coupled with the inter-
mediate antiferroelectric interaction, with sub-
script I. The spins s; and s, are coupled with the
weakest antiferroelectric interaction, W. Thus,

the positions of the spins within the partial sum
determine their labeling. This new prefacing
transformation in fact yields the average strong-
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FIG. 2. Reentrant phase diagrams calculated with
n = 5. The librational length is 6= 10"21 /z for the out-
ermost curve, but, for clarity, zero for the other
curves.
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est, average intermediate, and average weakest
coupling, thereby reflecting the variance.

The phase diagrams are thus obtained by sub-
mitting the outcome of the prefacing transforma-
tion (3) to the Houtappel condition (2). Figure 2
shows cases with B/A =0, 0.1, and 0.5. The
ratio of the average lateral separation to the fixed
molecular length, a/l, should monotonically de-
crease with increasing pressure. Along the
boundary from F to F, as a decreases the transi-
tion temperature increases, because the coup-
lings get stronger by a factor of a 3. But frustra-
tion takes over at F. From the underlying calcu-
lation, reentrant boundaries such as F'G are seen
to be due to frustration created by neighboring
molecules falling into the same notch. (The bound-
aries such as GI are due to frustration being re-
lieved via molecular libration, with neighboring
molecules still in the same notch. We believe
that this very-low temperature, high-pressure
transition is preempted by crystallization.) For
experimental comparison, the compounds 80CB
and 60CB exhibit, respectively, a reentrant
phase diagram and no smectic phase at all.? They
have a/l of about 0.26. This is consistent with
Fig. 2, indicating that these compounds are in
the steric hindrance regime of tail-tail interac-
tions, with this effect being less pronounced in
60CB. This is of course sensible, since 60CB
has a shorter (thus less bulky through floppiness)
tail.

Because of the antiferroelectric spin ordering,
the smectic phase in Fig. 2 is composed of inter-
digitated bilayers, with a z-axis repeat distance
of approximately two tail lengths plus one head
length, as seen experimentally.! However, the
interactions V4 and K in (3) can become ferro-
electric, for B/Az 1 and[/nza. Thus, when
HIK,]>1 is satisfied with K, > K;> | K|, a smec-
‘tic phase composed of monolayers obtains, with
z-axis repeat distance of approximately one tail
length plus one head length (Whereas, for the bi-
layer phase, at least one of the two largest-mag-
nitude K, must be antiferroelectric). This situa-
tion is shown in Fig. 3 for B/A =2. This double-
reentrance phenomenon has recently been re-
ported'® for the compound “T'y.” Our analysis
thus suggests that this compound is in the attrac-
tive tail-tail interaction regime (B/A >1). Finally,
our approach indicates that there will always be
a nematic phase between the two types of smectics,
be it very narrow at low temperatures (with a
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FIG. 3. Doubly reentrant phase diagram, with the
zero-temperature bicritical point (n =7, B/A =2,
6=0).

zero-temperature bicritical point).
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