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The first detailed physical explanation of the dynamics of short pulses in a dispersive
system that has loss is presented. The result provides a simple algorithm for predicting
pulse behavior without the need for asymptotic analysis. It was derived specifically for
electromagnetic pulses in Lorentz media, making it applicable to low-energy pulses in
resonant media, pulses in plasmas and dielectrics, remote ionospheric measurements,
and many pulsed laser systems. It appears likely, however, that the result applies to

even more general wave systems.
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There is a simple physical description available
for the dynamics of a plane-wave pulse after it
has traveled sufficiently far in a dispersive sys-
tem provided the loss in the system can be ne-
glected.! There is no such description known,
however, for any dispersive system in which loss
is important.? The lossy system that is best un-
derstood is the Lorentz medium. In that system,
the dynamics of pulses have been determined in
detail by a very involved asymptotic analysis.?3
However, there has been no physical explanation
of the results; it is not known why (in physical
terms) the absorption in the medium affects the
evolution of the field amplitude and instantaneous
frequency in the way it does. Because of this, it
has not been possible to apply the known results
for the Lorentz medium to surmise the evolution
of pulses in other lossy dispersive systems.

In this paper, we present a new mathematical
result that provides a physical explanation of the
evolution of the field amplitude and instaneous
frequency in a Lorentz medium. The result also
provides a simple algorithm for predicting pulse
dynamics without the need for complicated asymp-
totic analysis. The algorithm is directly applica-
ble to a wide range of physical systems such as
low-energy pulses in resonant media, pulses in
plasmas and dielectrics, picosecond laser sys-
tems, and remote ionospheric probes since the
Lorentz medium provides an accurate model for
these systems. Moreover, because of the physi-
cal nature of the result, it appears likely that it
can be used to describe and predict the dynamics
of pulses in other lossy dispersive systems such
as linear elastic, electromagnetic, gravity, and
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atmospheric waves in various media and guiding
structures.

Consider a plane electromagnetic wave with
real electric field E(z, ¢) linearly polarized along
the x axis and traveling in the positive z direction
through a linear, homogeneous, isotropic, tem-
porally dispersive medium occupying the half-
space z>0. The field can be expressed in a Lap-
lace representation as

ia+ .
E(z,t)= fia_,,, E(z,w)e *“dw, 1)

where g is an arbitrary positive constant and the
spectral amplitude E(z, w) satisfies the scalar
Helmbholtz equation [ VZ+k*(w)]E(z, w)=0. The
complex propagation constant k(w) is given in
terms of the complex index of refraction #n(w) by
k(w)=wn(w)/c where c is the speed of light in
vacuo. For a Lorentz medium with a single reso-
nance frequency, n(w) is given by

n(w)= [1 - b’ }1/2 , (2)

S WP —w P+ 261w

where b, 6, and w, are positive constants. For
our numerical calculations, we have used the
same parameter values as used by Brillouin,?
i.e., b*=2x10%/sec?, 6=2.8%10"/sec, and w,
=4X10'®/sec. This corresponds to a highly ab-
sorbing dielectric.

Let the field satisfy the boundary value E(0, t)
=f(¢) where f(¢) is a real function that satisfies
f(#)=0 for £<0. The special case of f(¢)=sin(w,)
for £>0 is a classical problem first treated by
Sommerfeld and Brillouin.® We are concerned
here with f£(¢) that is zero after some finite time,
A case of primary interest is the 6-function pulse

1451



VOLUME 47, NUMBER 20

PHYSICAL REVIEW LETTERS

16 NOVEMBER 1981

having f(¢)=05(¢). In that case, E(z,t) for fixed
z is the impulse response of the medium,

By applying the approach used by Brillouin,® we
find that the asymptotic approximation of E(z, t)
valid as z — with fixed 6=ct/z is given by a
constant K times the real part of the function*

_ Fw,) z
A(Z,t)—'[—:;aar(f:)—]-ﬂ; exp[c<ﬁ(ws)}, (3)
where
Flw)=@2m™ ), f(t)e*tat, 4)

and ¢(w)=iw[n(w) - 6]. The quantity ¢ (w,) is
the second derivative of ¢ evaluated at w,. The
frequency w, is a saddle point of the phase func-
tion ¢(w). For 0in a range 1<6<6g, the con-
stant K is 2(27¢)2 and w, is in the fourth quad-
rant of the complex w plane, slightly below the
real axis and moving towards the left with in-
creasing 6. For 6 in another range 65<6<6,,

K =(27c)"? and w, is on the imaginary axis moving
down with increasing 6. For 6>6,, K=2(2mc)"/?
and wg is in the fourth quadrant slightly below the
real axis and moving towards the right-hand side
with increasing 6. Approximate expressions for
w,, O, and 0, are given in Ref. 4. For Bril-
louin’s parameter values, 6g=1.295 and 6,
=1.503. The discontinuities in this asymptotic
approximation at 6= 6g and 6, have been elimin-
ated by a uniform asymptotic approach in Ref. 4
but the results are not needed here.

The above results parallel those obtained by
Brillouin.® By obtaining much more accurate
approximations for the locations of the saddle
points, however, we have found a new result that
could not have been discovered using Brillouin’s
expressions., Let Z’ and Z”, respectively, rep-
resent the real and imaginary parts of any com-
plex number Z. Then, we have found that for 1
<0<06gand for 6,<0<6_,, with 6 ., defined be-
low, the real part of the function occurring in the
exponent-in (3) satisfies :

P'(ws) = @' (wg) == wgn"(wg), (5)

where wj is a real frequency that satisfies

Vplwp) = < —2=2, (6)

n'(wg)+n"(wg)wz/0 "
This result was obtained by deriving approximate
analytic expressions for ¢’(w,) and ¢’(w;) and
showing them to be equivalent. Moreover, it was
checked for Brillouin’s parameters by using ex-
act expressions evaluated with numerical tech-
niques. The procedure used was to calculate two
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different values of 6 for each real frequency w of
interest. The first value of 6 was ¢/V(w) where-
as the second was the value of 6 at which ¢’ (w,)
= ¢@’(w). These values were found to agree to
within 6% for all 6 in the range of interest.

The quantity V,(w) is the velocity of energy of
a time-harmonic wave with angular frequency w,
as determined by the ratio of the Poynting vector
to the density of energy including both the energy
of the field and the energy stored in the medium.
The quantity 6 ., is defined to be the value of 6
given by (6) for wy=w ., where 1/Vg(w) has its
maximum value at w,,. When there is more
than one value of wg that satisfies (6) for a given
6, (5) is satisfied with the value of w, that yields
the smallest value of ¢'(wpy).

One important consequence of (5) is that the at-
tenuation of A(z, ¢t) with increasing z and constant
6 can be determined without requiring the knowl-
edge of the location of the saddle point w,. Since
w, is constant for fixed 6, Eq. (3) shows that the
attenuation of A(z, ¢) with increasing z and fixed
6 is determined by ¢’(w,). Hence, the attenua-
tion can be found by using (6) to evaluate w, and
substituting the result into (5). Since fixed 6 im-
plies that the point of observation is moving with
velocity ¢/6, it is seen that the attenuation of
A(z,t) is the same as that of the time-harmonic
wave with the least attenuation that has enevgy
velocity equal to the velocity of the point of ob-
servation.

For z sufficiently large, (3) remains valid even
when z and ¢ vary in a way so that 6 does not re-
main constant. In that case, w, and wg change
as z and ¢ change. For 1<60<6fgand 6, <0<0_,,,
w,/’ is approximately equal to w, (This approxi-
mation gradually deteriorates towards the tail
end of the pulse at =0 _,,, where the error is
about 10% for Brillouin’s parameters.) More-
over, w/” is very small compared to w,’ for 6
not too close to 6,. Hence, w, can be replaced
by wg in the slowly varying functions in (3). Since
z is large, the most rapidly varying function is

E(z,)

1 SB 1 max

FIG. 1. Asymptotic behavior of a 6-function pulse
for fixed large z.
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the exponential. The attenuation is already expressed in terms of w, in (6).
determined by the exponent

The oscillations are

izg'(w)/c =i[—w’t+zn'(w)w’/c-zn”(w)wu/c]

evaluated at w=w, . If we replace w, by wj in the index of refraction terms and set w/'=w, elsewhere
in this expression, it becomes

2@ (w,)/cmi[=wgt+zk (wg)=zn' (wgp)w " /c].

Combining this result with (5) shows that (3) can be approximated by

F(wyg)

Az, t)= [_"—W expli| - w,'"n' (wz)z/cl} expli[k(wy)z —wgt ]} (7)

Equation (7) displays A(z, ¢) as a modulated
wave with angular frequency w, and propagation
constant #(w). For fixed z, the wave is chirped
since wy is a function of time according to (6).
The amplitude is modulated by the factor in front
of the exponential but is primarily determined by
the change in the attenuation coefficient 2’/(w)
as wy changes with time. For fixed ¢, the z be-
havior is primarily determined by the propagation
constant 2(w;) which changes with z because wy
changes according to (6). If & is large enough,
the wavelength is shifted slightly due to the first
exponential term in (7) when w; is in the absorp-
tion band. Apart from this small shift, the prop-
erties of the pulse can be obtained from (7) with
the knowledge of w; without the need to know w,,.
The field is dominated by a single veal frequency
at each space-time point. That frequency wyg is
the frequency of the time-havmonic wave with the
least attenuation that has enevgy velocity equal to
z/t.

To illustrate the utility of (7) to obtain the pri-
mary features of the pulse, consider the 6-func-
tion pulse. Then, F(w)=1, Figure 1 is a sche-
matic drawing of the behavior of a 6-function
pulse as determined by (3). The high-frequency
field at the beginning corresponds to the first
precursor found by Sommerfeld and the larger-
amplitude, low-frequency field corresponds to
the second precursor found by Brillouin, If z is
taken to be constant, then 6 is proportional to ¢
and Fig. 1 shows the time behavior of E(z, t).
The primary features of this behavior can be ob-
tained from the behavior of the second exponential
term in (7) with the knowledge of w,. A plot of
wpvs 6 is given in Fig. 2 for Brillouin’s parame-
ters calculated by using (6) to evaluate 6 for var-
ious values of wy. Values of 0,,, and w ,, fol-
low directly from the plot. The value of 6, does
not show directly on the plot but it is very close
to 6, which is the value of 0 corresponding to w,
=0. Unfortunately, 6g cannot be obtained without

the knowledge of w,.

From Fig. 2, we see that for 1<0<0g, wyis
large and decreasing with increasing 6. Since
wg is moving towards w ,, which is in the center
of the absorption band, 2’/(w) is increasing.
This leads to a high-frequency field with ampli-
tude and frequency decreasing as 6 increases
from 1 to 6g in agreement with Fig. 1. For 6,
<60<80,,,, there are two possible values of wj.
The smaller value leads to the least attenuation
and hence that frequency dominates the field.
Consequently at 6=6,, we have wz~0 leading to
very low attenuation and a large-amplitude, low-
frequency field. For increasing 6, wg increases
towards w ., leading to increasing attenuation.
Hence, the frequency of the field increases and
the amplitude decreases as 6 increases, again in
agreement with Fig. 1. By the time 6 reaches
0 ax, the amplitude is very small and the pulse
can be considered to have passed. As a result,
we have obtained the behavior of the pulse as
shown in Fig. 1 for all 6 of interest except during
the short period when the transition between the
two precursors is taking place. During that peri-
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FIG. 2. Angular frequency wy (in units of 101¢/sec)
of a time-harmonic wave having energy velocity c¢/6.
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od, the field grows without oscillation and is not
dominated by any real frequency.

The above description can be extended to treat
transients that have a steady-state component
such as the step-modulated time-harmonic field
discussed by Brillouin.® In that case, F(w) has
a pole on the real axis at the signal frequency w,.
The correct dynamics are obtained for such a
case if a time-harmonic component with angular
frequency w, is added to the field obtained by the
above description for all 6> 6, where 6, is the
value of ¢ at which wz=w_. The field is domin-
ated by the time-harmonic signal for all 6> 6,
such that 2"/(wz)>k’'(w,). For all other 0, the
time-harmonic component is negligible compared
to the precursor field. Although the dynamics of
the step-modulated time-harmonic signal obtained
by this prescription are very different from the
classical results of Brillouin,® they are identical
to those obtained by a more accurate asymptotic
approach,®

The description of the field we have presented
is the natural extention to lossy dispersive sys-
tems of a description that has gradually emerged
over the last few decades to explain the dynamics
of pulses in lossless dispersive systems. The
method of stationary phase has been used to show
that, for rather general waves in rather general
lossless dispersive systems, the field is domin-
ated by a single real frequency at each space-
time point.! That frequency is the one having
group velocity equal to 2/¢. It has also been es-
tablished that, under very general conditions, the
energy velocity of a monochromatic wave is equal
to its group velocity in lossless dispersive sys-
tems.” Combining these two results shows that
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the energy-velocity description of pulse dynamics
applies to very general waves (elastic, electro-
magnetic, gravity, atmospheric, etc.) in very
general dispersive systems (dispersive media,
guiding structures, etc.) provided that the loss is
negligible. (For example, see Tolstoy' and Light-
hill.”) The result presented in this paper general-
izes the above description to apply to an impor-
tant class of dispersive systems in which loss is
important. This generalization makes it appear
likely that the energy-velocity description pre-
sented in this paper applies to general waves in
general lossy dispersive systems as well as in
lossless systems. Further research is necessary
to test this hypothesis.
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