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Subharmonic Route to Chaos Observed in Acoustics
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A subharmonic route to chaos including period-doubling bifurcations up to f/8 has been
observed in experiments on acoustical turbulence (acoustic cavitation noise). The system
also shows signs of reverse bifurcation with increasing control parameter (acoustic driv-
ing pressure amplitude). In view of the large variety of phenomena observed and yet to
be expected the system investigated may well serve as a further experimental paradigm
of nonlinear dynamical systems besides Rayleigh-Bénard and circular couette flow.

PACS numbers: 47.55.Bx, 47.25.Mr, 43.25.+g

There is increasing evidence that period-dou-
bling bifurcations’ and strange attractors? are
common phenomena for a large class of non-
linear dynamical systems. Most of this evidence
stems from relatively simple mathematical
models like the three-variable differential sys-
tems of Lorenz® and Réssler® and one-dimension-
al iterated maps on the unit interval® which show
links to dynamical systems via the Poincaré€
return map. The discovery of universal proper-
ties in period-doubling bifurcations of iterated
maps by Feigenbaum' could be confirmed for the
Lorenz model® and a five-variable model of the
Navier-Stokes equation,” and has stimulated the
search for additional universal features of non-
linear dynamical systems.®-!!

Compared with the large body of theoretical
work, experiments are rather sparse. Up to
now there are only two physical systems where
the onset of chaos is studied systematically and
which show some analogy to the behavior of the
above mathematical models. These are the
Rayleigh-Bénard experiment on the flow in a flat
convective layer of liquid heated from below®™**
and experiments on circular couette flow (flow
between two cylinders, the inner one rotating).'®' ¢
Experiments in other fields are just emerging,
such as in optics for optically bistable cavities'’
or proposed similar experiments with noisy
Josephson junctions, ® charge-density waves in
anisotropic solids and superionic conductors, *®
or pinned dislocation lines.?°

This paper presents experiments in acoustics
which in view of the results to be reported and
in analogy to the newly coined terms of “optical
turbulence”!” and “solid-state turbulence”!®+2°
may be called experiments on “acoustical turbu-
lence.” The experiment consists in irradiating
a liquid (water) with sound of high intensity (con-
trol parameter is the sound pressure amplitude)
and looking for the sound output of the liquid,
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called acoustic cavitation noise. The physical
situation is a somehow fundamental one: The
transport of acoustical energy through a liquid
is considered. It bears much resemblance with
the Rayleigh-Bénard problem where the trans-
port of heat through a liquid is investigated.

To irradiate the liquid a piezoelectric cylinder
of 76-mm length, 76-mm inner diameter, and 5-
mm wall thickness is used. When driven at its
main resonance at 23.56 kHz a high-intensity
acoustic field is generated in the interior, and
cavitation is easily achieved. The noise is picked
up by a broadband microphone?! and digitized at
rates up to 2 MHz after suitable low-pass filter-
ing (to avoid aliasing in the subsequent Fourier
analysis) and strong filtering of the driving fre-
quency (to be able to store the noise with just an
8-bit storage). Sound pressure power spectra
are calculated via the fast-Fourier-transform
algorithm from usually 4K samples out of the
128K storage available. More details of the ex-
perimental setup are given elsewhere.??

Power spectra of acoustic cavitation noise
usually consist of instrumentally sharp lines on
a noise background. The lines are related to the
driving frequency f, and lie at (n/m)f, (n, m=1,
2,3,...). Of special interest are the lines at
m =2, n<m, i.e., in the subharmonic region f
< f, of the spectrum. In early experiments the
occurrence of lines at f,/2, f,/3, and f,/4 has
already been found,?**2* but no convincing explana-
tion could be given. The explanation that bubbles
in water driven at twice their natural resonance
are responsible for the f,/2 line*® had to be aban-
doned since bubbles of the necessary size could
not be found and are unlikely to be present in the
experimental situation.®® Instead, after an ex-
tensive numerical investigation of bubble oscilla-
tions, it has been argued that special ultrahar-
monic resonances of bubbles smaller than reso-
nant size (especially the $ resonance where two
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oscillations of the driving sound field match
three oscillations of the natural oscillation fre-
quency of the bubble) are responsible for the sub-
harmonic line at f,/2 in the power spectrum,?®
but a direct verification of this hypothesis has
not yet been possible.

The present experiments were undertaken to
add to our understanding of the subharmonic line
problem. They differ from previous experiments
in that they are fully computer controlled to
realize almost any desired control parameter
history.

Figure 1 gives just one example of a pressure
power spectrum obtained at a driving voltage of
15 V. The history in this case was to linearly
increase the driving voltage to 15 V and then to
stay there for some time. These precautions are
necessary to arrive at the third period-doubling
bifurcation with lines at nf,/8. But even when
staying at a constant voltage large fluctuations
are observed, and usually only spectra with sub-
harmonics as low as f,/4 can be observed. Fig-
ure 1 suggests that our nonlinear acoustical sys-

tem may follow the period-doubling route to chaos

and may belong to the universal class of Feigen-
baum systems. Unfortunately this could not yet
be proved as the next bifurcation with lines at
nf,/16 could not be reached. There may be prin-
cipal difficulties in achieving this aim because
our system can be expected to be a noisy one
and this has been shown to limit the bifurcation
sequence.®

As a result of the total computerization of the
experiment we are able to do complex measure-
ments on acoustical turbulence and to gather
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FIG. 1. Example of a pressure power spectrum of
acoustic cavitation noise with subharmonic lines as low
as fo/8 (fy=22.56 kHz), i.e., three period-doubling
bifurcations have taken place. The driving frequency
is strongly filtered.
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enormous amounts of data. The question there-
fore arises of how to present the results. One
way that we found very appealing is in the form
of grey-scale pictures analogous to “visible
speech” where the power spectrum is plotted
versus time with the amplitude encoded as grey
scale. We have adopted this kind of presentation
for our studies of how the system reaches chaos
and have plotted the pressure power spectrum as
a function of the voltage at the driving transducer.
Figure 2 gives an example for the case where the
voltage is increased linearly from 0 to 60 V in
about 250 ms. During this time 128K samples

of the pressure in the liquid are taken at a rate
of 500 kHz. The total experiment thus lasts just
a quarter of a second. From these data about
1000 overlapping short-time spectra are calcu-
lated with 4K data each and a shift of 128 sam-
ples from one spectrum to the next. In Fig. 2
three successive spectra are combined to give a
total of 370 spectra. The grey level is encoded
with the aid of a 3 X3 matrix so that a binary
plotter can be used.

TIME (ms)
50 100 150 200 250

FREQUENCY (22.56kHz)

20 40 60

VOLTAGE (V)
FIG. 2. Sequence of power spectra displayed as a
grey-scale picture. The voltage at the driving piezo-

electric cylinder is increased linearly from 0 to 60
V in 262 ms.
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Many interesting features are immediately
visible in Fig. 2:

(1) The first period-doubling bifurcation sets in
at about 12 V (see closed circle in Fig. 2).

(2) Further subharmonic lines appear in a proc-
ess that does not look like period doubling. These
lines seem to detach from the f,/2 (and 3f,/2) line
with stops at 3f,/8 (5/,/8) and f,/3 (2f,/3) until
suddenly and with large amplitude the f,/4 line
and its odd harmonics set in (see 1/2, 3/8, 1/3,
2/3, 1/4, 3/4, and cross in Fig. 2).

(3) The f,/4 bifurcation occurs together with a
marked increase in broadband noise and a broad-
ening of the otherwise sharp line spectrum (from
cross to open circle in Fig. 2; the white gap
around f, is due to the band reject filter needed
to suppress the otherwise dominating driving fre-
quency).

(4) At about 43 V a further increase in the
broadband noise level is observed with the line
spectrum still detectable and additional lines at
certain odd harmonics of f,/8 (see from open
circle to open square and « in Fig. 2). This
state of the system ranges from 43 to 46 V only
and is the most chaotic state encountered (chaos
defined in terms of broadband noise at high level
in the power spectrum).

(5) In a process looking like reverse bifurca-
tion,?” the system returns to a line spectrum
with lines only at f,/2 and its harmonics and
with much less broadband noise (open square
in Fig. 2).

(6) Satellite lines appear around f,/2 and 3f,/2
(and also some other lines) which show some
periodicity with the control parameter (open
triangle in Fig. 2).

A general observation from other experiments
is that the state of total chaos seems to be un-
stable since it cannot be sustained by the driving
sound field for a longer period of time. Instead,
oscillations are observed between the background
noise and the line strength. Also single lines
may visibly oscillate. This is best seen in films
produced from sequences of up to 2000 power
spectra plotted on a graphic display (cathode-ray
tube) and filmed with a 16-mm film camera.

The picture of Fig. 2 is a rather condensed
form of looking at the properties of a dynamical
system. It would be very interesting to see other
dynamical systems like those of Lorenz® and
Rossler® as well as the experimental ones of
Rayleigh-Bénard and circular couette flow dis-
played in this way.

Some effort has been spent in modeling the ex-

periments theoretically. As a first step single
spherical bubbles have been taken and subjected
to a sinusoidal driving pressure of increasing
amplitude. The mathematical model is a highly
nonlinear ordinary differential equation of second
order for the radius of the bubble as a function of
time and includes surface tension, viscosity,

and compressibility of the liquid (water).?® Ra-
dius-time curves have been calculated numerical-
ly for different bubble sizes, sound pressure
amplitudes, and frequencies to get response
curves for this nonlinear gsystem.?® To simulate
the present experiments bubble wall oscillation
power spectra have been calculated and plotted

in the manner of Fig. 2 as a function of the driv-
ing pressure. Qualitatively similar behavior is
observed but strongly depends on the bubble size.
Of most importance seems to be the observation
that bifurcations are obtained, mostly from f,

to f,/2 to f,/3 (or also f,/4) to (quickly) f,/4 to
chaos and then back to f, or f,/2 (directly). Thus
both successive bifurcations as well as reverse
bifurcations are observed in this simple mathe-
matical model, like those encountered in the ex-
periments.

More sophisticated models must take into ac-
count that many bubbles are present in the liquid
which all couple via their sound radiation. A
fuller discussion of these questions as well as
of the phygical processes responsible for the ob-
served phenomena is given in Ref. 22.

We arrive at the conclusion that in our acoustic
system there is a subharmonic route to turbu-
lence, but one which does not solely proceed via
successive period-doubling bifurcations although
this route is strongly involved. We therefore
propose to make a distinction between a sub-
harmonic and a period-doubling route to chaos.
Moreover, our system shows signs of reverse
bifurcations which may be worthwhile to study in
greater detail.

We are greatly indebted to W. Steinhoff for
building the 128K-byte buffer storage out of 1K,
1-bit chips for our experiments, and G. Heinrich
for building the microphone. This work was sup-
ported by the Fraunhofer-Gesellschaft, Munich.
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Determination of Transition in Couette Flow in Finite Geometries

Kwangjai Park, Gerald L. Crawford, and Russell J. Donnelly
Department of Physics, University of Ovegon, Eugene, Ovegon 97403
(Received 10 August 1981)

The transition from laminar to Taylor vortex flow in a couette apparatus with fixed
ends has been studied. The reversibility of the transition has been examined with use of
a reflectance technique with Kalliroscope tracer with a variety of geometries and fluids.
Very little hysteresis is found, providing the speed is ramped with a dimensionless ac-
celeration less than a certain value. Contrary to earlier expectations, it is not possible
to neglect the effect of the ends of the apparatus simply by making the apparatus longer.

PACS numbers: 47.20.+m, 47.25.-c
Consider a couette-flow apparatus with cylin-
ders of radii R, and R,, gap d=R, - R,, and length

L between fixed ends. The radius ratio is de-
fined as =R, /R, and the aspect ratio I'= L/d.
Most theoretical work on the couette problem
assumes that there are no ends, and experimen-
tally many results with large aspect ratio have
been in reasonable agreement with theory. The
experimenter, however, needs to know how rap-
idly the Reynolds number Ny, = QR,d/v can be
changed and still maintain quasistatic conditions
(here Q is the angular velocity of the inner cylin-
der and v is the kinematic viscosity of the fluid).
This paper advances such a criterion based on a
series of careful measurements of the transition.
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The results, however, demonstrate that an at-
tempt to neglect the effects of the ends by simply
increasing L is unrealizable in an actual labora-
tory experiment. These results have important
consequences for time-dependent experiments in
couette flow and possibly other experiments such
as Bénard convection.

We have used glycerol-water solutions with
various amounts of Kalliroscope tracer (polymer-
ic flakes) and have measured the light reflectance
at a local minimum near the center of the appara-
tus (a2 minimum in the reflectance corresponds to
a maximum in the radial speed of the fluid). The
fluid temperature was measured with a HP 2804A
quartz thermometer. The output of the photocell
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FIG. 2. Sequence of power spectra displayed as a
grey-scale picture. The voltage at the driving piezo-
electric cylinder is increased linearly from 0 to 60
V in 262 ms.



