
Ver.UME 47, NUMHER 20 PHYSICAL REVIEW LETTERS 16 NOVEMBER 1981
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Constants of Motion for the Burgers Equation
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The Burgers equation is linearized on the Schwartz space S. It fo11ows that the Bur-
gers equation oan be defined by a Hamil|onian formalism and that it has an infinity of
time-independent constants of motion in involution.

PACS numbers: 03.40.-t

The Burgers equation' in two space-time dimen-
sions,

Bu (t, x)/Bf = B'u(t, x)/Bx'+2u (t, x)Bu (t, x)/Bx,

is often given as an example of a nonlinear differ-
ential equation which cannot be defined by a Ham-
iltonian formalism and which does not have an in-
finity of constants of motion. ' It is proved in this
note that the Burgers equation (which is dissipa-
tive and has no solitons) can be defined by a Ham-
iltonian system and that it has an infinity of con-
stants of motion. The existence of sufficiently
many constants of motion forces in general the
solution of an evolution equation to rest on a "sub-
manifold" of smooth initial conditions. This facil-
itates the integration of the equation and helps to
determine physical properties of the solutions
such as the development of shock waves.

Consider Eq. (1) in its abstract form on S (the
Schwartz space of rapidly decreasing test func-
tions from R to R),

du(t)/df = B'u(t ) +2u(t )Bu(t )—= T(u(t)),
(2)

u(0)=u, c S,

where [Bv](x)= Bv (x)/Bx Arep. resentation T with

respect to the vector field bracket of the two-di-
mensional commutative Lie algebra t, (space-
time translation) on vector fields on S is defined
by

t, ~ (a, b) —aTO+bT, , (3)

where T, (u) = Bu is the generator of space transla-
tion. I prove that the I.ie algebra representa-
tion T is formally lineariz3ble on S,' and that the
intertwining formal power series defines an en-
tire function A, which is analytically invertible.
(This linearization is not identical to the Cole-
Hopf transformation, but it has a similar struc-
ture. ) The representation T turns out to be in-
tegrable to a representation U of the semigroup
RXR+ on S, where R, is the set of all nonnega-

tive reals. In particular this implies that Eq. (2)
has a solution u(t)E S, t & R, for any initial con-
dition u (0)e S.

The function A extends to various spaces larg-
er than S, such as the space I.' of absolutely in-
tegrable functions. If u, & L' then u(t)& C,"(R)
for each f, &0. Thus the Burgers equation is
smoothing out "singular" initial conditions.

It is easy to construct (without any reference
to some Hamiltonian formalism) an infinity of
constants of motion b„ for the heat equation on S.
The above mentioned results allow then to find
such quantities B„=b„oA for the Burgers equa-
tion. The nonlinear superposition principle and
hierarchy of higher-order Burgers equations are
recovered in a similar way.

Intuitively, one cannot hope to find a Hamiltoni-
an formalism with canonical coordinates for the
heat equation on S, where the equation cannot be.
integrated backward in time. However, I con-
struct a family of Hamiltonian formalisms (each
expressible in canonical coordinates) for the heat
equation on the space S„, (of functions bounded,
together with their derivatives, by Gaussian func-
tions). The heat equation can be integrated for
each time on this space. The pullback by A gives
then a family of Hamiltonian formalisms for the
Burgers equation, each of them being completely
integrable.

(1) Linearization. —Introduce T,'(u) = Bu, T,'(u)
=B'u, T,'(u„u, )=u, Bu, +u, Bu„and T, '=0 other-.
wise for j» 1, i =0, 1, u, uy u2+ S Further let
A" C L,(8"S, S) (n-linear symmetric continuous
mappings from S into S), let E(S) be the space of
formal power series from S to S, and let

B~ C= Q B~( Q I S C" ~+'SI, ,)v„

for B,CEE(S). Here I, is the identity mapping
on O'S and T„ is the normalized symmetrization
operator. The product B * C is the functional de-
rivative of B in the direction C if Band C con-
verge. The bracket [,]„is defined by [B,C]~
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=B+C —C+B,
The representation (with respect to [,]„)t,

H (a, b)-aT, +bT, E F(S), with T, =g„,T,", is
formally linearizable' iff there exists AWE(S)
such that

is open in S.
Proof. I—t is straightforward to check that (5)

is a particular solution of (4).
We define a complete set of seminorms on S by

A +T; =T, 'A, i =0, 1.

Let us introduce

(4)
t~(u)= sup l(1+IxI)Ns u(x)l, x&0.

xC R
0&e~N

n

[A"(u„. . . ,u„)](x)= —,gu„(x) g s 'u, (x) (5)
k= I /&k

The space C~" is defined as the subset of C (R)
that satisfies

and A" (u) =A(u, u, . . . ,u), where u, u„.. . ,u„~ S
and e 'u(x) = f"„u(P)dP

ProPosition 1.—The power series A =P„,A"
formally linearizes T and Q„,A" converges to
the entire function u -A(u) = 8 exp(s 'u). The in-
verse A '(u) =u(1+a 'u) ' is analytic on the
image A[S], where

A[S] = {ua Sl 1+ f"u (f)df & O, vx& RU (~H

llfll = sup Is f(x)I &
xr:R

0~ cx~N

One verifies that

p, (uf )- (2M)"pg(u)llill~'llf II.' ",
M&N& 0,

for u~S, f~ C~". It follows from (6) that

(6)

Corollary 2. The Lie algebra representation
T is integrable to a C" semigroup representation(7)A(u) =s exp(s 'u).

p~(A'(u))- g, p (u)lls 'ull„"lls 'ull, " " '&
0= M+1 k= M+1

so A is entire and

Equation (7) gives the inverse (A is injective)

A '(u)=u(1+8 'u) '. (8)

Equations (7) and (8) give the expression for A[S].
I et vEA[S]; then v+y&A[S] if p, (y) is sufficient-
ly small, so that A[S] is open. Equations (6) and
(8) give that A ' is analytic, Q.E.D.

The convexity of A[S] gives the nonlinear super-
position principle. The existence of a global so-
lution u(t)P S, t & 0, for each initial condition u,
H S is ensured by the following:

(RXR )xSH (a, b, u)-[U(a, b)](u)e S.

Proof. T' is inte—grable to a C" representation
U' on S of RxR+. Further, the open set A[S] is
mapped into itself by O'. Hence V=A oV OA

integrates T, Q.E.D.
The commutative Lie algebra of the higher-or-

der Burgers equations is given by I'„=d[A '] X„
~A, n=1, 2, .. . , where X„(u)=s"u and d is the
functional derivative. Explicitly the polynomial
7„ is

n" 1

[I'„( )]( )= p[- f" (r)dt]g (",)(s"" )( )s" p[ f" (c)d&1
k=0

b„(u) =2p) '2 ""(i—1)"fdxdy (x+iy)"u(x)u(y),

g=0, 1, . . . ,u~ S, and define B„=b„.A. The functions B„are then constants of motion for the Burgers
equation and are explicitly given by

(10)

n

B.(u) =(2.) '2 ""g (", )(i-I)'(- I-i)" '
L=O

&& f dx[x'u(x) exp f" u(p)dp] /' dx[x" 'u(x) expf" u(p)d(], n=0, 1, .. . ,u~ S.

The functions B„are local in the velocity potential 8 u, as they are finite sums Bnd products of in-
tegrals of densities in 8 'u.

We now turn to the question of constants of motion for the heat equation on S. Let p: R'- C be a har-
monic polynomial. Then one sees that P(u) =f dxdgP(x, y)u(x)u(g) is a constant of motion for the heat
equation on S. In particular, define the moments
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Proposition 3. —(B„t„," is a set of time-independent, C" constants of motion for the Burgers equa-
tion on S. The set (B„J„„"is independent at u (in the sense of analytic mechanics) iff u is not of the
form u = 8""v/(1+8 v), v~S, s"vEA[S], i.e. ,

Q k„dB„(u)=0, k„C C, ¹ M & ~

implies k„=0, %=0, 1, . . . . The proof is not difficult and I therefore omit it here. One proves with
the help of proposition 3 that the points where (C„]„„"is dependent for each N is nowhere dense in S.

(2) Hamiltonian formalism. —Let S„, 1&n &0,' be the space of all complex valued C" functions p such
that

I8" q (x)l & C, (q)exp[-a(q)lxl""], u=o, 1, . . .
and let Ss, 1&P&0,' be the space of all entire functions cp such that

lx" q (x+iy)l - C, '(q ) exp[a'(q)I yl»" "],
where C(cp), a(y), C'(p), and a'(y) are some positive numbers. One has S„=S",' where the Fourier-
Laplace transformation is defined by

P(x+iy) = (2~) " f ds exp[is(x+iy)]p(S), y~ S„.
(S will from now on stand for a real-valued function and S" for its image S„.)

The Burgers equation is integrable for each time t~R in S„,as this is the case for the heat equation
and as A[S»,]c:S»,. The existence of Hamiltonian formalisms for the heat equation is given by propo-
sition 4.

Proposition 4 Let. f&S„, 0&@ & —,', and f00. Then the form ut.' S,~,xS», R-defined by

&ut(p, g) = 21m f ds f (s)P*(S(1+i)/W2) $(S(1+i)/v 2)

(= (2p)»'fdxdy i '[f ((x —ig)(1 —i)/v 2) —f ((y —ix)(1 —i)/v2)]y(x)g(y)f

is a weakly nondegenerate constant symplectic form, ' for which T,' is a symplectic vector field, i.e. ,
I.~a~t =0, where I. is the Lie derivative. (The asterisk denotes complex conjugation. )

Proof. (i) uz is—antisymmetric and constant. (ii) I.~no&(y, ()=~&(B p, ()+ uz(qr, 8 g) =0. (iii) ~z is
weakly nondegenerate, i.e. , & 1z(p, g) =0v PE. S„,—can=0; Q.E.D. We can construct canonical coordi-
nates as follows: Let R: u —(p, q) be the transformation

p(s) =lu(s(1+i)/~)l'f (s), q(s) = »g-(s(1+i)/~&).

R is invertible for a/t f w 0 (as element in S ). R takes the form +t into co& .'

&ut'((5, p, 5,q), (5 p, 5,q)) = fds(5, p(s)5~(s) —5,p(s)b, q(s)).

Its related Poisson bracket is by definition

( I" 5E 5G 5E 5G

Op(s) 5q(s) 5q(s) 5p(s)

and (E,G] =(E R ', G'R '] R.
The vector fields (in Sect. 1) 4;„+n= 0, 1, . . . , are symplectic with respect to &ut and therefore the

generalized moments are

c„(u) = (-1)"2 '(2m) ' f dxdy[f ~ "+ ~((x —iy)(1 —i )/v 2)+f '"+' ((y —i )x(1-i)/vY)]u() x(u)y,

f'"'0) = (s/s~)"f 4), ~ = x+ iy,

where ixco&=-d(.-„are the constants of motion for the heat equation. The c„are in involution. The
Hamiltonian function for the heat equation is c, (which is of course not to be confused with the noncon-
served physical energy).

The HHmiltonian formalism for the Burgers equation is now defined by the symplectic form ~& =

A*op& (with related Poisson bracket (F,GJ„z=(F.A ', G.A '] ~A). lt follows from the above men-
tioned properties for the heat equation that the functions C„=c„o&, n =0, 1, . . . , 3re constants of mo-
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tion in involution and that i~ ~f = —dc„. To ex-
pose the complete integrability for the Burgers
equation we introduce the variables (P(s), Q (s))
=[R(A(u))](s). Then (P(s),Q(s'))„=6(s -s'),
(P(s), P(s'))„~=0, the expression C, (u) = —fds

&& s'P(s), and the Hamiltonian equation E = (C„F)„f
give

P(s) =0 and Q(s) = —.s'.

Finally I mention that

P(s) =f (s) P (1/nt )B„(u)s" for u ~ S,i„
which explains the normalization of b„ in (10).

I mant to thank M. Flato for pointing out the
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cussions.
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