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The origin of the large higher-order effects in radiative corrections is traced to charged-
lepton scattering. The long radiative tail of the one-photon inclusive cross section,
which does not arise in lowest order, is responsible for these large effects.
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Nonperturbative methods for radiative correc-
tions, initiated in the basic work of Yennie,
Frautschi, and Surra, ' have been further devel-
oped in the important paper of Grammer and
Yennie. ' On the other hand, the more rigorous
aspects of the nonperturbative treatment of in-
frared divergences have been vigorously studied
by Zwanziger. ' Recently ' I have introduced
rigorous and practical nonperturbative methods
to effect radiative corrections. Surprisingly,
these methods predicted' that in the recent muon
scattering experiments' ' the elastic contribu-
tion is much larger, in the very inelastic regime,
than the conventional one-emitted-photon (1y)
bremsstrahlung cross section. ' The choice of a
technique to cary out the radiative corrections
affects substantially the extracted nonradiative
structure functions and in particular the scaling
violations for small x. It is thus important to
understand and possibly check by experiment

which approach is correct.
It is shown in this paper that these large higher-

order effects' originate from a long radiative tail
to the hard bremsstrahlung cross section, not
present if only one-photon emission is taken into
account. ' In effect, in the very inelastic regime,
there is a, large probability that the hard photon
is accompanied by collinear radiation. I compute
this "radiatively corrected" hard bremsstrahlung
cross section as a function of the photon energy
and compare it to the conventional Bethe and
Heitler" formula. The two results may be sub-
mitted to experimental test.

In the one-photon exchange approximation the
bremsstrahlung differential cross section (DCS)
in charged lepton-proton scattering, including
the emission of an arbitrary number of collinear
unobserved photons from the lepton vertex and
the corresponding infrared virtual corrections,
is given by

ado a p'
dQ 'dE' d&u (2&) p

4

, „,dQ„W, '(P, q) T, (p, p'; k)E(p, p'; p -q -p' —k) .iq')'

Here, p(~, O), p(&, p), p'(&', p'), k(u, k), and q(q', q) are the momenta of the proton, the incident and
scattered lepton, and the observed and exchanged photon, respectively; the vectors p' and k point in
the solid angles 0' and O~. W, denotes the usual nonradiative proton structure functions ( j= 1, 2),
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E(p p'K) =(u&)'e ~f") J do j do'(oo') " "6'(X—ot —o't').
0 0

At high energies, the "infrared exponent" uA and
the normalization function nE are given by The azimuth

(2)

al y~ integration can be analytically
effected by taking u =1(1—o) -I'(1+o') as polar
axis in the laboratory frame. In the very in-
elastic regime, the bremsstrahlung cross sec-
tion is dominated by the elastic contribution in
which W, „=2MW, (t)6(xv'-M'), where M is
the nucleon mass,

QX= (u/&)[ In(q '/m') —1],
uE (u/7)) I in(Q /m) —~w'].

(3a)

(3b)

Here n is the fine-structure constant, m is the
lepton mass, Q~'=-(p -p')' is the experimental
square of the momentum transfer, and r =m'/Qz'.
The light-cone momenta l and l' reduce to P and
p' at high energies. In lowest-order perturba-
tion theory, the differential cross section" (DCS')
is obtained from Eq. (1) by the substitution E
-6'(p -q -p'-k).

Using Eq. (2) in (1) and effecting the q integra-
tion, we see that there remain two extra integra-
tions over the parameters 0 and a' which appear
in

t=- —q'= Q'+2m&(~ —jocose, ),

(5b)A@2 = (P + q)
' = M + 2Mq —t,

and the 8',. functions are readily expressed in
terms of the nucleon form factors. Here, Q'
= q~'(1 —o)(1+o'), m =- p,, =E(l —o) -E'(1+o'),
where E and E' are the laboratory-energy com-
ponents of l and l', and 6)~ is the polar angle of k.
With use of 6(ao'-M') to effect the 0, integration,
Eq. (1) becomes

q=l(1- o) —l'(1+o') -k. (4)

Z', the lepton tensor components, "and E the infrared-free spectral function, '"

dQ' dE' da (2') p
do d(x' M(,;i- x ~, (t) &,(i)—~00') P.

(6)

a -(I-o)(1+o)-~„o-O, o o-O,

where

(7a)

(7b)

'2 7r

where 2~7,'.(» = dy~ T, are given explicitly in
the appendix of Ref. 5 and the integration domain
D is characterized by

= 270 GeV, Q~' =18.68 GeV', and x~ = Q~'/2v~
=0.04, where v~=M(E -E') in p, +p scattering.
Curves (1) and (3) correspond to o'=v =0, curves
(2) and (4) to o=1 —T=0, and the "straight line"
(note the semilogarithmic scale) to o= o'=X =0.
The physically important parameters defined with
reference to lowest-order perturbation theory

and t is a linear function of 0 and 0'which, from
Eqs. (5), reads

oE+o'E'=E -E' —w —t/2M =—X. (8) 200

Equations (7) and (8) lead to a pair of fourth-de-
gree inequalities which are difficult to solve. In-
stead, we set

o=x(1 T)/E, o =x—T/E,
and choose t and T (0 -~ -1) as new integration
variables in Eq. (6). We note that in lowest-
order perturbation theory, X —= 0 and thus
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In the (t, e) plane, the boundary curves are
easily derived from Eq. (7) by setting T =0 or v
=1. Figure 1 illustrates the results for a very
inelastic kinematical configuration in which E

FIG. 1. Phase space boundary in the (t, ) plane in
p, +P scattering for E= 270 GeV, xz= 0.04, andgz
= 18.68 GeV~. Curves (1) and (3) correspond to 0' = 0,
curves (2) and (4) to 0= 0, and I; to 1y emission.
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are, in increasing order of magnitude, t ', t~',
t~. , and t„corresponding to the minimum, the
"p peak, " the "p' peak, " and the maximum allowed
value of t, respectively. " The corresponding ~
values are defined using Eq. (10) and denoted

(4)p (4)p and co . '. The effective part
of D is split into four subdomains (I to IV), each
one being delimited by three curves: I [(1),(2),
(3)]; II [(2), (3), t=t ]; III [(2), (3), (v=0]; and
IV [(2), (3), (4)]. For fixed t, the corresponding
limits on the v integration, derived from Eqs. (7),
are [0,T,„], [0, 1], [w , T . „], and [7~,1],
where

(X -E -E') +[(X -E+E') +4EE'A, ]'i
Iljil
IHRX

do'

dQ' dE'4~

Since in lowest order of standard perturbation
theory ~~ -m -~ „, the part of the higher-
order spectrum below ~~' involves the emis-
sion of at least two real photons. Also, since
the t values are quite large for this part of the
spectrum (see the inset in Fig. 1) DCS is sup-
pressed by 1/t ' and by the nucleon form factors.
We note, however, that a rise in DCS will occur
for a soft observed photon energy corresponding
to a, de/~ spectrum at order o.'. For simplicity
and relevance to a recent experiment where only
hard photons are measured, "I have computed in
this program DCS for cu - co~' where only sub-
domains I and II are relevant.

Computing the Jacobian for the (o, &') —(t, T)

change of variables, and lumping together sub-
domains I and II, Eq. (6) becomes

3 I~ e (4M'AZ )- "M(aX)
(2m) p

1 dT

[~(I T) ]
1-OA'

go dt
(to t) 1 2@X

in~")

w,. (t) 7;.(~, t, T)
pt2

(12)

where f;„(i) is the inverse function of T,„(f)
given in Eq. (11). In practical computations,
f;„(v) is obtained as the solution of a. fourth-de-
gree equation with f, - t;„(T) ~ t„where f, and t,
correspond to curves (1) and (2). Equation (12) is
the central formula of this paper. To recover
perturbation theory, it is convenient to think of
one factor uX as associated with the "singulari-
ties" at v=0 or T =1, the other factor nX being
associated mith the singularity at t =t .

Figure 2 illustrates the hard bremsstrahlung
differential cross section from Eq. (12) in p. +p
scattering compared to DCS' for E =280 GeV,
Qs'=5. 0 GeV', and vs=0. 01 (curves a) and xs
=0.1 (curves b) with use of the standard dipole
proton form factors. It is important to realize
that the log-log scale used to resolve the peak
located very closely to ~,„' overemphasizes
the peak region with respect to the tail where in
fact most of the integrated cross section lies.
This figure shows that DCS and DCS' resemble a
"hadronic" cross section, with and without radia-
tive corrections, respectively. The fundamental
result of this paper is that this tail becomes very
long for small x~ and large Q~' as curve a shows.
This result may also have been qualitatively anti-
cipated from Fig. 1.

Let us define CS&,I, and CS„;~ as the ~-inte-
grated cross section in the [~~', &u „']and
[&u . ', ~~'] intervals, respectively, with parallel
definitions for CS&,k' and CS,»&'. The values of

10
lA)
4l

10
Xl
C

10
o

UJ

1

b 10

I
1

I I I
& ) I

)
I )

~ ~ I IIIII] I & I IIIII) I I I IIIII

-2
10 a

I I I a I I7 I I IIIIIII I I IIIIIII I I IIIIII

1keV 1MeV 1 GeV

~max
1TeV

FIG. 2. Bremsstrahlung differential cross section
in p+P scattering atE = 280 GeV, Qz2= 5.0 GeV~.
Curves a are for xz = 0.01 where t„~ = 8.9&&10 ~ GeV,
max = 266.439 GeV, ~& = 266.315 GeV~ ~min
GeV; and curves b are for x& = 0.1 where t mh = 9.7
&&10 ~ QeV, ~m„= 26.639 GeV, && = 24.211 QeV,

= 0.41 GeV. Solid curves are for DCS and dashed
curves for DCS .

these cross sections are indicated in Table I for
the two kinematical configurations of Fig. 2. For
very inelastic scattering, x~ = 0.01, we see that
although DCS in the tail region is about 4 orders
of magnitude smaller than its peak value, CS, &

is 6 times large~ than CS&,k. Indeed, the tail
extends over 260 GeV whereas the peak extends
over 0.12 GeV only. The very large difference be-
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TABLE I. ~integrated bremsstrahlung cross sec-
tions in units of nb/GeV sr. E = 280 GeV, Qz = 5.0
GeV~.

XE CSp~~ CS ~g CS zai1
0

0.01
0.1

6.57
0.50

7.05
0.53

38.10
0.17

0.70
0.15

tween CS~q and CS~D' is not surprising since the
radiative tail involves at least two-photon emis-
sion which considerably lowers the relevant t
values, as seen in Fig. 1. For x~=0.l, the
difference between the results given by first-
order perturbation theory and the inclusion of
higher-order effects is much less pronounced,
since much less phase space is available for
multiphoton emission.

Comparison of DCS and DCS' with experiment
involves a "binning, " that is, an integration over
some hopefully small domain in xs and Qs' which
will considerably spread the narrow peak pre-
dicted in both formulas. The radiative tail which,
as we have seen, has a much lower cross section,
spreads over a much larger range in photon en-
ergy. Its observation depends more on back-
ground and on the details of the experiment. It
may be valuable to note that too sharp angular
cuts on the photon direction may eliminate part
if not all of the radiative tail. To illustrate this
fact, we let H„denote the polar angle of v =p -p',
and obtain for the kinematics of case a (()„)= 3.8
x10 ' rad, (9„)=1.2x10 "rad at the peak, and

(8, )=7.9x10 ' rad, (t)„)=1.3x10 ' rad at &u =33
GeV.

The integrated cross section CS' = CS &,q'+CS„;j'
is usually used by experimentalists to subtract
from the data the elastic contributions to do/dQ'
dE'. In the present nonperturbative approach to
radiative corrections, the integrated cross sec-
tion is related but not equivalent to the elastic
contribution discussed in Ref. 5. In effect, I
have shown in this reference that the "inclusive"
cross section involves the contribution of zero
and one oblique photon, and an oblique photon
does not have, in contrast with an observed pho-
ton, a d~/~ spectrum because of the built-in
counterterms. However, since soft photons are
not very important for small x~, the order of
magnitude of- these cross sections is the same.
For the kinematics of case a, for example, I

found that the contribution of zero and one oblique
photon is 5.7 and 53.5 nb/GeV sr, respectively,
as compared with CS =CS~,k+CS~s=44. 7 nb/GeV
sr. Here, the higher-order elastic contribution
is about 7 times CS'. These large effects are
expected to be smoothed after binning and experi-
mental cuts. '4

In conclusion, this paper demonstrates that the
long radiative tail to the hard bremsstrahlung in
the very inelastic regime accounts almost triv-
ially for the large higher-order effects reported
previously. ' I urge the various experimental
groups to take into account these effects in their
analyses in order to clarify the scaling violations
for small x~ and large Qs'.
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