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Kac-Moody Algebra is Hidden Symmetry of Chiral Models

L. Dolan
&ke Rockefeller University, 1Veto York, &ego York 10021

(H,eceived 4 June 1981)

The infinite parameter Kac-Moody algebra Clt]G, whose elements are loops in & and
which is related to the vertex operator for the string model when G =sl(2c), is identified
as the hidden-symmetry algebra of the two-dimensional chiral models. These observa-
tions suggest that a Kac-Moody Lie algebra is the hidden symmetry of Yang-Mills fields,
a phenomenon which, if true, might lead to complete integrability and nonperturbative in-
formation. This algebra, also relevant to integrable soliton theory, may elucidate the
classical and quantum inverse method for the chiral theory.

PACS numbers: 11.30.Ly, 11.10.Np, 02.20.+b

This paper identifies the infinite parameter Lie
algebra responsible for the nonlocal currents'
in the general two-dimensional chiral models to
be the affine Kac-Moody' ' subalgebra C[t]SG
and indicates how this observation could lead to
new information for chiral and gauge fields and
its consequence for strong-interaction theory.
Here G is the algebra of the chiral-theory sym-
metry group. In order to clarify the notation for
the general audience, observe that a simple rep-
resentation of the generators of the algebra
C[ t ] S G is M,~" = T, S t" where t is an indeter-
minate, n = 1, 2, . . . , , and T, are the generators
of the finite parameter algebra G. It then follows,
given [ T„Tt]=c,&, T„ that [M, t" l, Mt t"~]

c fg ~g ~ This is familiar to phys icists as
current algebra. C[t]S G is an infinite-dimen-
sional Lie algebra defined over the field C[t ],
the ring of polynomials in t with values in C, the
complex numbers.

In light of the major observation in this field, '
namely the close analogy of the chiral model to
the functional formulation' ' of Yang-Mills the-
ory, it is possible that the continuous symmetry
group generated by [Ct] SUS(N) is an invariance
of the Yang-Mills action in addition to the fifteen-
parameter conformal group and the SU(N) gauge
transformations. In any case, it is remarkable
that the elements of C[t]SG may be regarded
as loops in G when C is restricted to S'.' Further-
more the exponential generating function for A, '
—= (C S G) S C, is known to be similar to the vertex
operator in the string model. ' The algebra A, '
is also relevant for supersymmetry. ' Among
other questions that still need to be answered is

in what sense does the loop-space variable g [ $]
=I'e~"'"t or the conventional variable A„'(x)
carry a representation of the loop algebra C[t ]
SSU(X). Surprisingly, the classical theory for G

goes over extensively in general to C[ t, t ]S G,
the algebra defined over the Laurent polynomials.
For instance, C [t, t '] S G possesses a family of
irreducible representations analogous to the
finite-dimensional representations of G." Pre-
viously a construction of C[t, t ']Sel(2c) was
given in the mathematical literature using differ-
ential operators. ' This may prove to be the use-
ful representation for Yang-Mills loop space.

The Kac-Moody algebra has also recently been
shown to be relevant in the Backlund transforma-
tions of soliton systems. ' Although the existence
of conserved commuting charges is characterized
by an infinite-parameter Abelian algebra, the non-
Abelian Kac-Moody also appears, inherent to the
differential operators of the integrability condi-
tions. Application of this algebra to the inte-
grability problem in the chiral fields might help
to resolve the unsolved initial-value problem of
the classical theory and the proposed simpler
problem of the quantum inverse method. "

It is emphasized that an explicit construction of
the Kac-Moody algebra C[t]SG for a general
simple Lie algebra G is given in this paper.

The Lagrangian density for the general class
of chiral models is R(x) =~+tra&g(x)8&g '(x).
The matrix field g(x) is an element of the group
generated by the algebra G. The equations of
motion are &A&=0 where A&

——g '& g. The in-
finitesimal transformations associated with the
infinite set of nonlocal currents are given by

5"g=-gA"= -gA, "p, , A"+'(x, t) = f dy DOA"(y, t) -=j" dy{ &oA"(y, t) +[A.,(y, t), A" (y, t)]},
A' = T =- T' p'

A' = [», T]=[ f „dy».(y, t), T1, «c.
(2a)

(2b)
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Here p' is constant and T' are the matrix generators of G. Let us also define 5&»"g=6, "gp, =-gA, "p,
= 6 ". Equation (1) (i) is a. symmetry of the equations of motion [see (3)] and (ii) shifts Z(x) by a total
divergence without use of the equations of motion" [see (14)]:

Bq[(g '+A"g ') Bp(g —gA")] = B~Ap —B~D~A" +O(p2) .
With the equations of motion, B&A&=0, and B„A,—B,A&+[&&,A, ]=0, when B&D&A" =0, D&lA"

The generators M, for the hidden symmetry group are constructed from the infinitesimal trans-
formations. ' For 5"g=—p'~, "g, we have

M, ~" & = —Jd'y |&,"g(y) 6/6g(y). (4)

To identify the group, we compute the commutators [M, ~ &, M, "& ]. From (1), we find explicitly that

[M, ~'&, M, &" &] = c„.M. &" &

[M, ~'&, M ~" &]=c, ,M, ""&,
(5)

(6)

where c„,are the structure constants of G: [T„T,]=c„,T,. From (6) and the Jacobi identity it fol-
lows for n, m =0, 1, 2. .. that

[M, & &, M, ~" &] =c„.M. ™'n&.

This is the infinite parameter algebra g[t] G.
The proof (by induction) of (5), (6), and (7) is as follows: From (1) and (4), to order p, v„

[M, ' &, M, '"&]p,v,

=Jd'x{6& &" [g(x)+&&,
&

"g( )]—6,
&

"g(x) —6&, &
[g(x)+6, &"g(x)]+6&,

&
g(x)j6/6g(x)

=-Jd'x g{v,[A,(g-gp, A, ) -A, J-p.[A, (g- gv, A, ")A, ]-v,p, [A, , A, "]j6/6g.
Assume [M, '&, M~ " ]=c,c,M, "+' for n=N Then.

A, (g- gp, A. ') -A, "=p.{[A, , A, "J-[A,"",T, ]+c...A. "~.
Then, using (2a), (9), and X(g-gp, A, ") =

X
—P, A, ""+O(p~) and B, X=Ao,

vt pc[Me ', Ml,
""] = —Jd'x g(x){v~$ „dy (Do[A~ "(g-gp, A, ') —A~ "]—[D,p, A, ', A ~] )

+v P.([A ""(x),T.] —[A.'(x), A, ""(x)]))~/6g(x)
Jd'x{V,p—,c„,J dy D,A, "")6/6g(x),

or equivalently

(Sa)

(Sb)

(9)

(10)

[M "& M &""&]=cc t b cba a

[M, ', Mb ']=c„,M, '. Note that equation (9) is true for %=1 because A, '(g gp A ')
P, [A, Tl j-and A, =[X, T, ]+-,[X, [X, T, ]], where X'(x, t) = J" dy{B,X(y, f)+-,'[& (y f) X(y t)]]

Therefore, from (11) we have proved (6). The proof of (5) is similar, where

A, "(g-gp, T, ) —A, " =p, {-[A,", T, ]+C„,A, ~) .
To prove (7), assume for n =Ã and m =M,

[M, ~"&, M ™]=c,,M, ~"+"&.

Equation (12) is true for m=1 and all n. Therefore [M, '"",M, ' &J=c„,'" '«r ~=»nd»l &.
Now we prove, using the Jacobi identity, that given (12), [M, ~ &, M, ~""&J=c„,M,

c [M &~& M ™Jl&]=[M"& [M & & M &'&]] =[M" [M " M ']]+[M ' [M " M ']]
h1 +4+1 &i~ N +X+1C ade ceg C cae deg )'"~g C cd b C abg lYI

That (1) shifts Z(x) by a, total divergence is now proved by induction. The transformation (1) shifts
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the Lagrangian density by p, A, "Z(x) = -p, [M, ~"
&, Z(x)] = 8 tr A„B„A". Therefore, to first order in

p, o~, from (6) and Jacobi's identity, we have

p, o,c„,b,." "Z(x) = -c„„[M.'""',Z(x)] p, o, = -[[M, i" ~, M, "~],Z(x)] p, o„

=([M, &" ~, ~„'Z(x)] —[M„~'~, ~, "Z(x)])p, a„.
Since

~' ( )=8
I ~. ( ~ +2[ .x, x]) g,

then

[M.', &."&( )] =-8„„"'([g-a~,'], )+&„„"'([g],X)

is also a total divergence and p, o,c„,&,""Z(x)
is a total divergence.

In conclusion, Eqs. (1), (2), and (7) are an
explicit construction of the Kac-Moody algebra
C[ f ] Im G. Since the infinitesimal transformations
(1) form an algebra, they generate finite field
transformations which form the hidden symmetry
group.

All these symmetry considerations have been
carried out in the classical formulation of the
chiral theory, that is to say the infinitesimal
field transformations rather than the quantum
brackets have carried the representation of the
group. This has been done for two reasons.
First, for G=O(3) the nonlinear sigma model, a,

specific constraint requires quantization. via
Dirac brackets. (The hidden symmetry is re-
sponsible for factorization of the two-particle S
matrix and no particle production and thus re-
mains in the quantum theory. ) Since constraints
differ for various choices of G, it is impossible
to discuss quantum brackets for G in a general
way: To quantize, we must specify the theory.
Secondly, the motivation for this paper comes
from the need to develop a systematic nonper-
turbative approximation for the Yang-Mills the-
ory. The chiral models have so far been relevant
via a classical connection to the functional Yang-
Mills fields. And it is in the effort to maintain
a general matrix g(x) which is then replaced by
the matrix g[$] =Pe ~"' in the study of sym-
metry which led to the emphasis on classical
notation.

The next step in this work is to see whether or
not this algebra exists in the gauge theory. If it
does, I propose the following consequences: (1)
In accordance with Ref. 5, the symmetry will
lead us to complete integrability of Yang-Mills

!theory, either in loop space or in the convention-
al formulation. (2) If the symmetry survives
quantization, it will imply nontrivial restrictions
on the fundamental integral in the nonperturba-
tive region, which we can calculate in a systemat-
ic way. It would thus provide a controlled ap-
proximation to strong interaction theory.

I am heartened that the symmetry algebra un-
covered in the chiral models shares the proper-
ties we believe to be useful for a nonperturba-
tive picture of the strong interactions, namely
that the fundamental variable y[ g] is defined in
loop space and that trg is related to the string
wave functional.

The author thanks B. Julia, B. Kostant, and
A. Boos for useful comments. This work was
supported in part by the U. S. Department of En-
ergy under Contract No. DE-AC02-81ER40033-
B000.
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The origin of the large higher-order effects in radiative corrections is traced to charged-
lepton scattering. The long radiative tail of the one-photon inclusive cross section,
which does not arise in lowest order, is responsible for these large effects.

PACS numbers". 13.60.Hb, 13.40.Ks

Nonperturbative methods for radiative correc-
tions, initiated in the basic work of Yennie,
Frautschi, and Surra, ' have been further devel-
oped in the important paper of Grammer and
Yennie. ' On the other hand, the more rigorous
aspects of the nonperturbative treatment of in-
frared divergences have been vigorously studied
by Zwanziger. ' Recently ' I have introduced
rigorous and practical nonperturbative methods
to effect radiative corrections. Surprisingly,
these methods predicted' that in the recent muon
scattering experiments' ' the elastic contribu-
tion is much larger, in the very inelastic regime,
than the conventional one-emitted-photon (1y)
bremsstrahlung cross section. ' The choice of a
technique to cary out the radiative corrections
affects substantially the extracted nonradiative
structure functions and in particular the scaling
violations for small x. It is thus important to
understand and possibly check by experiment

which approach is correct.
It is shown in this paper that these large higher-

order effects' originate from a long radiative tail
to the hard bremsstrahlung cross section, not
present if only one-photon emission is taken into
account. ' In effect, in the very inelastic regime,
there is a, large probability that the hard photon
is accompanied by collinear radiation. I compute
this "radiatively corrected" hard bremsstrahlung
cross section as a function of the photon energy
and compare it to the conventional Bethe and
Heitler" formula. The two results may be sub-
mitted to experimental test.

In the one-photon exchange approximation the
bremsstrahlung differential cross section (DCS)
in charged lepton-proton scattering, including
the emission of an arbitrary number of collinear
unobserved photons from the lepton vertex and
the corresponding infrared virtual corrections,
is given by

ado a p'
dQ 'dE' d&u (2&) p

4

, „,dQ„W, '(P, q) T, (p, p'; k)E(p, p'; p -q -p' —k) .iq')'

Here, p(~, O), p(&, p), p'(&', p'), k(u, k), and q(q', q) are the momenta of the proton, the incident and
scattered lepton, and the observed and exchanged photon, respectively; the vectors p' and k point in
the solid angles 0' and O~. W, denotes the usual nonradiative proton structure functions ( j= 1, 2),
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