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The emission of light charged fermions from a one-dimensional potential step and from
a Julia-Zee dyon is analyzed. Even for the case of massless fermions, this emission
process violates chirality and provides a simple illustration of the axial anomaly.
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Since its discovery' in 1969, the axial anomaly
has had a number of interesting and important
applications. Perhaps most dramatic are those
which result in the actual production of fermions
with quantum numbers inconsistent with classical
conservation laws or quantum perturbation theo-
ry. ' We will show that such anomalous fermion
production occurs in the background of a Julia-
Zee dyon. ' I et us first examine a simpler case.

(i) One-dimensional electrostatic steP —Con.sid-
er a charged fermion moving in the one-dimen-
sional potential A,(x) shown in Fig. 1 according
to the Dirac Hamiltonian

H = -io. ~ &„+Pm +eAo .
When 2m &v it is energetically favorable to pro-
duce particle-antiparticle pairs in the electric
field near the origin, sending the particle with
positive charge off to the left and the antiparticle
to the right. In the limit m =0 (which we will
henceforth assume) this emission should be least
suppressed. However, it explicitly violates the
conservation of the chiral charge

Q'= Jdx g~y, g=(N, -N, ) -(N„-N„), (2)
r

where y'=-n, N»N„, X»N„are the number of
left- or right-moving particles or antiparticles,

y(x) = Q $ de[a, 'y, ' '"(x)+b, 'tq. '""(x)j.
K k p

respectively. For the fermion emission described
above 4Q'=2) The quantity Q' is conserved on
the "classical" or first-quantized level. How-
ever, the corresponding current contains an
anomaly' in the second-quantized field theory:

&qj"'= eq g y" y'q=(e/2n)F~e~.

In the large-time limit one expects a steady-
state flux of the chirality Q',

j"'(x)
~ ~

= J dx B„j"'

=(e/m)J dx &„A, =v/m,

for I large. Let us compute the flux of chirality
directly and compare with this prediction of the
anomaly.

We will choose as the initial state ( i) of the
fermionic system one which looks like the vacuum
for large ~x ~. In the language of second quantiza-
tion, we expect that for x»l those states with
E &-,'v should be empty ("positive"-energy states
if the constant potential —,'v is ignored) while those
with E & ~v should be filled. Similarly for large
negative x, states with E & --,'v should be empty
and those with E & ——,'v filled. Such a state can
be defined by expanding the Heisenberg field
operator g(x) in an appropriate basis:

Here the basis functions y, are chosen to be a
complete orthonormal set (normalized to 5 func-
tions in energy) which vanish for m»l and sat-
isfy Hg=Eg for -ec»/. With such a choice of

y „ the initial state defined by

eA (x)
O

B
+v/2

satisfies the requirements outlined above. A
simple method for obtaining such a basis uses
the Hamiltonian (1) but treats the regions x &0
and x &0 as completely independent. Hermiticity
in each region is maintained if we only consider
functions whose upper and lower Dirac compo-

-v/2

FIG. 1. The one-dimensional electrostatic potential
energy eAo.
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nents obey p, , ,(0)/q, ,(0) =tan5„. thus, for o. =~„

zx)00,
, .„) I

1 sin[-J, eA, (x) +Ex + 5„]~

~(2n)'i' cos[-1 eA, (x) +Ex + 5,]

Note that the state (7) necessarily contains a mix-
ture of chiralities. Our physical requirements
on the initial state i i) have prevented the conven-
tional choice that the y, (x) be eigenstates of the
Hamiltonian (1). Although such states can be
chosen to have definite chiralities they will un-
avoidably mix positive and negative energies. A

left-moving eigenstate with energy E lying in
region B (Fig. 1) will be interpreted as a negative-
energy state on the right, but must travel without
reflection to the left where it is viewed as a posi-
tive-energy state.

It is now a straightforward matter to determine
the flux of particles and antiparticles present in
the large-time limit of ii). As we will see, the
only contribution comes from those states with
energy in region B, initially confined to the right-
hand side, q g, . Their large-time limit is as
follows: (a) The left-moving component travels
through the step and for large time approaches a
left-moving eigenstate of (1). (b) The right-mov-
ing component travels off to the right and dis-
appears; there is no incoming or reflected wave
from the left to replenish it. As a result of (a)
the left-moving states with energy E between
——,'v and + 2v appear filled at large times. Since
each carries a probability flux of 1/2&, the inte-
grated flux of chirality carried off to the left by
these particles if F,= v/2n

Similarly because of (b) the large-time limit of

i z ) differs on the right from the vacuum because
the right-moving states in region B are empty.
If these empty states are interpreted as right-
moving antiparticles we get a further outgoing
chiral flux 5 =W+. Since for regions A. and C
the states on the right and left are either both
filled or both empty, that condition remains true
in the large-time limit and no further flux re-
sults. Thus the total chiral flux is F, +F =~/&
in precise agreement with the prediction (4) of
the axial anomaly. We now turn to the three-
dimensional case which is remarkably similar
to the situation above.

(ii) Three dimensionaL Juli-a-Zee dyon. —In the
simplest static gauge the vector potential corre-

sponding to a Julia-Zee dyon has the form'

&.'= -(r) 'J(r) —.1
gF'

Here i and 0 indicate space and time directions,
a is an SU(2) vector index, g is the Yang-Mills
coupling constant, r = vari, and r"=r/r For. large
r K(r) -O(e '"") a dna(r)/r-- z Q+/r+O(e "")'
We will consider the case where the constants v
and Q are positive. Asymptotically, the field
configuration specified by (8) can be gauge trans-
formed to 7,8„, where 8„ is the vector potential
of an Abelian magnetic monopole with pole strength
1/g and electric charge Q/g.

If a massless, SU(2) doublet, Fermi field g(r, L)

is coupled to the dyon, the corresponding Hamil-
tonian is

H=a (-zV —,'gX'7')+—,'gA, 'T'.-

For large z this Hamiltonian simplifies and its
eigenfunctions y (r) have the form

y'(r) = LL(r)
y~ '(r) )
(p~ -(r) ]

(10)

where U(r) is the gauge transformation referred
to above and y ' are four -component spinors
which are eigenstates of the Abelian Dirac Hamil-
tonian for a fermion of charge + —,'g moving in the
vector potential 8„. Again because 8, is non-
zero at spatial infinity, one expects that this
fermionic system should be unstable. The pres-
ence of fermion fields y' and y with opposite
charges can be exploited by creating and moving
to infinity a y' fermion with charge + —,'g and a

antifermion also with charge +-,'g. If the
fermions had a mass m, this would require a
rest mass energy 2m but liberate an electrostat-
ic energy 2(u/2). Hence we expect instability
against fermion emission when 2m &o [just as in
(i)].
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The specification of the initial fermionic state
i i) in the background of the dyon and its large-
time limit follows exactly the same procedure as
the simpler example (i) above. Again (see Fig.
2) the state i i ) must have all states with charge
+—,'g and E )+—,'v empty while states with charge
+~g and E &+ —,'~ must be filled. This is accom-
plished if we replace the four-component func-
tions y, g, in the expansion (5) by eight-compo-
nent functions y „i, which obey similar re-
quirements: For large r, y, is an eigenstate
of the Hamiltonian (9) with eigenvalue E (the
extra quantum numbers o. are chosen below) and
after gauge transformation, as in Eq. (10), con-
tains onllt an upper (I,=K=+ 2) or a lower (I, = i&

= --,') isotopic component. Just as in the one-
dimensional case, these basis functions cannot
be eigenfunctions of the true Hamiltonian since
that operator mixes these two asymptotic be-
haviors.

The flux of chirality Q' = fd'x yy 'g carried by
the emitted fermions present in the long-time
limit of i i) can be computed quite simply if the

are chosen to be eigenstates of J' and J,
following the analysis of Kazama, Yang, and
Goldhaber. ' Here J =I + —,

' 0 is the total angular
momentum with L =r x (-iV —gx8) —Ki. The new
index e represents the triple j, m, i. The quan-
tity j(j +1) is the eigenvalue of J while m is the
eigenvalue of J,. For j)0 there are two inde-
pendent solutions with fixed charge and the above
eigenvalues. These are distinguished by i = 1, 2

and can be chosen to be orthogonal and to obey

& '& %g, m. X, K Pg, m. 2.K

For j= 0, there is only one solution, labeled i = 3,
which is an eigenstate of v r" with eigenvalue 2z.
Because of Eq. (11) and the orthonormality of
the states with i =1 and 2, there is no net chiral-

ity carried off by particles in these states: e.g. ,
JdQ-„r" ~ y,yy'y, =0, while a similar calculation
shows that goo~. „~, being an eigenstate of o r",

carries a maximum chiral flux ~/n in a manner
identical to the chiral flux of +1/2m carried by
both left- and right-moving fermions in our one-
dimensional example.

Thus the flux of chirality radiated by the dyon
is carried by fermions in this special j= 0, i = 3
state. Just as before we begin with those states
with I,= --,' and energy in region B (Fig. 2) filled,
while the corresponding states with I,=+-,' are
empty. As time evolves, the incoming part of the
I,= --,' state is reflected by the dyon. Because of
chirality conservation the reflected outgoing wave
must carry a flux of chirality equal and opposite
to that of the incoming wave. This means, as we
saw above, that it must have opposite charge, ' or
I,=+ —,'. Hence in the limit of large time the I,
=+ —,', j = 0 outgoing states with energy in the
region B are occupied. These can be interpreted
as radiated particles carrying a flux of chirality
P, =-u/2m. Similarly the outgoing parts of the
filled I,= ——,

' states disappear off to infinity as the
time evolves and are not replenished by scattering
from the incoming I,=+ —,

' states which are empty.
These empty outgoing states (with a chirality flux
+1/2& when viewed as outgoing antiparticles)
carry a net chiral flux = F,. The resulting
total flux of chiral charge is 0, +5 =o/m. This
can easily be compared with the prediction of the
axial anomaly,

&„yy"y'y=(g'/32'')Il~' 'E "'c (12)

As before, the steady-state chiral flux is given
by the spatial integral of either side of Eq. (12).
For the case where I'„„' is the field strength of
a Julia-Zee dyon we have'

( 2/16&2) J d3& ~Pe,uP a (g2/4&2) fd3& s ~ aB a

= lim [-(g'/4&') JdQ„-&,'(PR)B,'(vR)r'R'].
Char. ge +g/2 Charge =g/2

]I

B

asl

+Q/2

FIG. 2. Energy spectrum of particles with charge
+ &g (& = + 2) and mass ~ far from a Julia-Zee dyon.

= g/n (13)
in precise agreement with our above result.

We conclude that the emission of massless
fermions by a Julia-Zee dyon provides a relative-
ly simple situation where the physics of the axial
anomaly can be seen quite directly. The flux of
chirality carried off by the emitted fermions im-
plies an actual creation of chiral charge only if
the intrinsically ambiguous vacuum matrix ele-
ment of the chiral current does not give a com-
pensating flux. With a gauge-invariant definition
of the current, the vacuum far from the dyon is
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not affected by the asymptotic limit of A, and this
vacuum matrix element vanishes.
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Two-Cluster Channel Decoupling of the Alt-Grassberger-Sandhas N-Botly Equations
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As an extension of a four-body investigation by Haberzettl and Sandhas, a partial de-
coupling of the N-body equations by Alt, Grassberger, and Sandhas is performed in
such a way that only transitions into a given type of two-cluster configuration remain
coupled. Taking into account particle identity, one then has to so1ve only a sing1e-chan-
nel integral equation. All other reaction channeIs are obtained by quadratures. The re-
sulting expressions resemble optical potential models.

PACS numbers: 11.80.Jy, 24.10.Dp

Vp to now numerical investigations making use
of Faddeev-type N-body equations have been per-
formed to my knowledge only for systems consist-
ing of three or four bodies. Limited computer
capacities on the one hand and the high degree of
coupling of existing N-body equations on the other
hand are the primary reasons for this rather
meagre practical turnout of in principle exact
theories. In the present paper, I will show that
it is possible for at least one of the X-body the-
ories, namely the one proposed by Alt, Grass-
berger, and Sandhas (AGS), ' to remove the high
degree of coupling and thus make the N-body prob-
lem more amenable to numerical and also certain
theoretical (see concluding remarks) investiga-
tions.

In what follows I will only consider transitions
between arrangements of the X particles into two
clusters. There are 2" ' -1 such two-cluster con-
figurations. Except for one remark below, I will
not deal here with breakup explicitly. In the AGS
theory, as in many other X-body theories, one
has to treat simultaneously in a coupled system

of 2~ ' —1 integral equations all transitions be-
tween one particular incident two-cluster config-
uration and al1 2" ' -1 possible final two-cluster
channels, even if one is interested in only one of
these transitions. (For more details, see Ref.
2.) What I want to show here is that a considera-
ble amount of this coupling can be removed in a
quite straightforward manner. While it would be
possible, in principle, to decouple the equations
completely (i.e., have one integral equation for
each transition), I do not want to do so, because
this would entail symmetrization problems when
dealing with identical particles. I rather want to
perform the decoupling in such a manner that only
transitions into final channels belonging to the
same type of two-cluster configurations remain
coupled. Under "type of two-cluster configura-
tions" I subsume all channels that have the same
number of particles in the smaller of the two
clusters. Hence, denoting this number by n, the
degree of coupling I want to achieve is (~), which
is smallest for n = I, namely just E. (For the
special case N = 4 and n =1, this decoupling was
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