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Time-Dependent Variational Principle for Predicting the Expectation Value of an Observable
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For a given statistical state at time t 0, the expectation value of some observable at a
later time t

&
is expressed in a variational form. Different trial choices for the quanti-

ties to be varied (state and observable) generate different approximations, in which the
evolution of the state is optimally fitted to the measured quantity. Examples are given
in the context of mean-field theories.
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Let us consider the following general problem:
Knowing the state of a system at time t„wewish
to obtain in the framework of some approximation
a best estimate for the average value at time t,
of a given observable. In the case of quantum
mechanics, the inputs are the initial state at time
t„characterized by a density operator D, and
the observable to be measured, represented by a
Hermitean operator A. The output to be deter-
mined is the average (A) at time t,. The connec-
tion between t, and t, is controlled by the given
Hamiltonian H. The sought-for average,

(A) = Tr exp[-iH(t, -t,)]D

x exp[iH (t, —t,)]A,

is often difficult to evaluate. In the following, we
write a variational expression I, which admits
(A) as its stationary value, and which by restric-
tion of the trial space lends itself to various ap-
proximations, some well known and some not.

The independent variational degrees of freedom
are the matrix elements of two time-dependent
matrices D(t) and A(t), and the quantity to be ren-
dered stationary is

I= — f 'dt[TrAdD/df-h(D, A)],
0

+ TrD(t, )A(t, )

with

h(D, A)=—i TrD(t)[H, A(t)].

The variation fi associated with variations 5D(t)
and 5A(t) involves two end-point terms TrD(t, )
&& CA(t, )+Tr6D(to)A(t, ) which vanish if D(t) and
A (t) obey the boundary conditions

D(t, ) =D, A(t, ) =A.

Equations of motion for D(t) and A(t) are then ob-
tained by requiring that

Tr5 A(dD/dt +i[H, D]) = 0,

Tr5D(d A/dt +i[H, A]) =0, (6)

for any variation 5A and 5D. Kith the boundary
conditions (4), one gets

D(t) = exp[- iH (t —t, )]D exp[iH(t —t,)],
A (t) = exp[iH (t, —t)]A exp[-iH (t, —t)].

As stated, we find that the stationary value of I
is the expression (1) of the average value of the
observable A at time t» for an initial state & at
time f,

Thus, the particulars of the problem enter
through the boundary conditions (4): The initial
condition on D(t) determines the information on
the state, whereas the final condition on A(t)
tells which quantity is to be measured. Starting
from the value D, D evolves from t, to g accord-
ing to the Liouville-von Neumann equation (I),
while A proceeds backwards in time from I;, to t
according to the Heisenberg representation (8)
[the unusual plus sign in (6) reflects this back-
ward evolution]. The quantity TrD(t)A(t) does not
depend on the intermediate time t, and is equal
to the stationary value of I, that is to the average
(A) at time t,.

In case the state D and the operator A reduce
to projectors l()(gl and ly)(yl, the "action" (2)
takes the special form

I= —2 lm J''ddt( gl y)((pl (id/dt -H)l q)

+
l &q(t, )l q (t,))l'.

This is reminiscent of various types of variation-
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al principles aimed at evaluating probability am-
plitudes. The present principle, however, deals
directly with the mea, sured quantity TrDA which
is the square of an amplitude. Notice also that
the extension to quantum statistical mechanics
has led us to treat the density matrix and observ-
able, rather than the usual bra and ket, as con-
jugate dynamical variables. '

The quantum structure of the theory is embed-
ded in the form (3). To treat problems in classi-
cal statistical mechanics, it would be sufficient
to replace in (8) the commutator by a Poisson
bracket.

We now list briefly a few examples of applica-
tion. As usual for variational principles, approx-
imations %re derived by restricting D and A (as
well as their boundary values D and A) to sub-
spaces simple enough for making the evaluation
of I feasible. The approximate equations of mo-
tion which replace (7) and (8) are obtained by re-
quiring Eqs. (5) and (6) to hold for any allowed
5A and 5D. The corresponding value of I is
TrD(t, )A(t, ) provided the variation 6 A ~ A is per-
mitted. If moreover 5D ~D is permitted, TrD(t)
x A(t) remains constant in time. ' We shall focus
on many-body fermion systems (having for in-
stance in mind collisions between atoms or heavy
nuclei) and we shall choose trial forms of D and
A which a1low the use of some form of Wick's
theorem. We shall denote by y either a creation
or an annihilation operator in Fock space, by JQ j
the class of operators which are quadratic in y,
and by (Y) the class of operators of the form
expQ.

(I) Da (Y), AE (Q).—With these special choic-
es for D and A, Eq. (5) yields immediately the
time-dependent Hartree- Pock-Bogoliubov evolu-
tion equation for D. Within the class of indepen-
dent (quasi)particle states, this equation appears
therefore as the best choice (in the sense of our
variational principle) for predicting the average
of a single-particle observable (and more gener-
ally of any observable Q). In the present frame-
work, it should be supplemented by the equation
of evolution of A, derived from (6) by restricting
the variation 5D to the class 5D =D6Q (6Q arbi-
trary) which is associated with De (Y). The re-
sulting equation for A is complicated and is coup-
led with that for D. It should be considered as an
approximation for the Heisenberg evolution (8),
adapted to the initial state D. It needs not to be
solved however, because the approximate (A)
can be evaluated at time t, by solving only for
D(t). In contrast, the evolution of D does not de-

pend on the particular choice of the observable A
nor on the time t„provided A belongs to the
class (Q). This feature of the time-dependent
Hartree-Fock (TDHF) equation, which will be ab-
sent from the forthcoming examples, appears
here somewhat as a happy accident.

The usual "cold" TDHF approximation is ob-
tained from the variational principle by further
restricting D to be a projector on a Slater deter-
minant. Another special case is the Vlasov equa-
tion, associated with the replacement of h by its
classical counterpart.

(2) D c (Y), Ae (Yj.—This example generaliz-
es a problem which has recently attracted atten-
tion, ' ' namely the evaluation of transition ampli-
tudes in the framework of mean-field approxima-
tions. It has been shown that the usual TDHF ap-
proximation, which is then inadequate, should be
replaced by coupled equations for two sets of
orbitals. To treat this problem in the present
language, one should take for the state D and the
channel operator A, as well as for the trial op-
erators D and A, (unnormalized) projectors on
the Slater determinants generated by the unknown
orbitals. By using the form (9) for I, we recov-
er the coupled equations of Refs. 3-5. Actually,
our formalism extends to operators D and, A be-
longing to the class (Yj, which includes the pro-
jectors on Slater determinants as limiting cases.
The equations of motion then result from (5) and
(6) by letting 6A = A5Q and 6D = 5Q'D (6Q and 5Q'
arbitrary). Their explicit form may be written
by a straightforward use of the group properties
of {YJand of a generalization of Wick's theo-
rem. ' Since they couple D and A, their solution
is made complicated by the mixed boundary con-
ditions (4). A simplification occurs for the com-
bination TrD Ay y„/TrDA, which evolves accord-
ing to a TDHF equation (with a non-Hermitean
mean field).

Being less specific and better suited to general-
ization than the previous derivations, the present
approach to the problem of transition amplitudes
has the main interest of setting this example into
a wider perspective, as illustrated by the next
example.

(3) D a ( Y), AK(Q'j. —This choice is fitted to
the prediction of quantities such as the statistical
fluctuation of some single-particle operator, for
instance the width of the mass distribution of final
fragments in a heavy-ion reaction. Here again,
the approximate equations of motion result from
(5) and (6) by letting 5A =Q 6Q+5QQ and bD
=D5Q'. We do not write them here, since their
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explicit form is rather lengthy but easily obtained
by means of Wick's theorem. Their main feature
is an intricate coupling between D and A: Be-
cause the observable A is not quaChatic in y, the
evolution of D does not follow the TDHF equation.
This may explain why the latter equation, which
has been so successful for evaluating averages of
operators Q, seems unadapted for reproducing
fluctuations such as the experimental mass disper-
sions. Actually, one should not consider TDHF
as an approximation for the full density matrix
(7), but rather as a tool for evaluating averages
of operators Q only.

A common feature of these examples is the
couP/ing between D and A Its origin lies in the
boundary conditions (4), which force us to start
from both end points of the time interval (t„t, ),
as well as in the reduction of the trial space im-
plied by the approximation scheme. Of course,
the usefulness of the variational principle will be
limited by the intricacy of the approximate evolu-
tion equations. Should these equations prove to be
untractable, a compromise might be found through
a further reduction in the number of variational
degrees of freedom parametrizing D and A.

As a price paid for this unavoidable contraction
of the description, the best choice for D(t) does
not dePend in general on the observable A to be
measured at time t,. In other words, one is not
entitled to use D(t) as a genuine density oPerator,
i.e., for predicting the average value of any other
observable. ' In particular, it is not required
that TrD(t, ), the average at time t, of the unit op-
erator, be unity [indeed, in examples (2) and (3)
it is not]. Neither is it required that D(t) be
Hermitean (TrDB need not be real for any obser-
vable B), a freedom which may be helpful for
problems of a tunneling type (the time t may then
become complex). Also, nothing prevents an in-
itially pure state (D' =D) from evolving into a
mixture [indeed, in example (3) above, the prop-
erty D'=D is not preserved] . The contraction of
the trial space is again responsible for such vio-
lations of evolution properties which are fulfilled
by the exact density operator (7). Their occur-
rence does not necessarily mean that the approxi-
mation is unphysical. Actually, the situation may
be compared with symmetry breaking in static
mean-field approximations. In this case, satis-
factory values may be produced for symmetry-in-
variant observables, even though a finite unphysi-
cal value is then assigned to a quantity known to
vanish in the exact state for symmetry reasons
(e.g. , pairing assigns a nonzero value to the aver-

age of a pair of creation operators in the ground
state of a nucleus).

Note that the expression (2) for I has the for
mal structure of a classical action in phase space;
the matrix elements of D and A play the role of
coordinates q and momenta P, respectively, and
the corresponding Hamiltonian h is bilinear in q
and P. The end-point term TrD(t, )A(t, ) is associ-
ated with a Legendre transform, needed to re-
place the usual conditions on q at times t, and
by the mixed conditions (4). With this analogy,
restricting the spaces for D and A amounts to
setting constraints on the q's and P's; the approx-
imate equations of motion thus enter the frame-
work of the constrained Hamiltonian dynamics, '
which should serve as a guide to ensure the con-
sistency of one or another approximation.

In view of its flexibility, the present variational
principle for state and observable seems a good
starting point for a microscopic introduction of
collective coordinates. Indeed, if D and A are
parametrized by a few variables A, and p, &, re-
spectively, the variational equations (5) and (6),
where bA and 6D are replaced by BA/Bpz and
BD/aA, . for each j and i, would provide equations
of motion for X,. (t) and p, ~(t). In addition, the
built-in asymmetry between the states, which en-
ter at the initial time, and the observables, which
enter at the final time, might prove helpful to
deal with irreversible behavior. Finally, the
variational principle seems suited to build time-
dependent approximations that would go beyond
mean-field theory.

We are grateful to P. Bonche, H. Flocard,
M. Gaudin, A. K. Kerman, and Sir Rudolph E.
Peierls for fruitful discussions.

'The duality between density operators and observa-
bles underlies the definition of a density operator as a
linear mapping from the observables to their average
values. See, for instance, the introductory review by
U. Pano, Rev. Mod. Phys. 29, 74 (1957). At a more
mathematical and general level, algebra, ic quantum
statistics defines a state as an element of the dual
space of the algebra of observables. Here, density
operators and observables remind us in addition of
canonically conjugate variables in classical dynamics.

2The oonstanoy of TrD (t }A (t ) may be used to build
an alternative variational principle, in which the inte-
grand of (2) would be divided by this quantity. The
corresponding expression (9) would be akin to the
effective action of J. P. B1aizot and G. Ripka, to be
published, which has been an incentive for the present
work.
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