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Pressure Measurement of Solid He through the Magnetic Ordering Temperature
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The pressure of solid He has been measured as a function of temperature and molar
volume down to and through its nuclear ordering temperature. Pressure measurement
above the ordering temperature reveals that besides the known 1/7' term there are a

significant negative term in 1/T? and a positive term in 1/7°3,

The observed discontinuous

change in pressure through the ordering temperature is discussed in connection with the

first-order phase transition.

PACS numbers: 67.80.Jd, 67.80.Gb

Solid *He shows a peculiar nuclear magnetism
because of its unique direct exchange interaction,
although it has a simple nuclear spin 3 and a bee
crystal in the low-pressure phase. The direct ex-
change interaction depends strongly on the lattice
spacing, i.e., molar volume of solid *He. In this
respect pressure measurements of solid *He have
provided valuable data on the exchange interac-
tion.' So far the investigated temperature range,
however, has been limited to above 13 mK be-
cause of the long relaxation time. We have low-

1304

ered the temperature range down to 0.47 mK,
and present here the first measurements of the
pressure of solid He in that temperature range.
Higher-order terms than the first-order term of
1/T have been observed in the pressure versus
temperature relation above the ordering tempera-
ture T, and new information on the ordering has
been obtained from the pressure measurements
in the ordered state.

Cooling was performed by means of adiabatic
demagnetization of a copper bundle. A pulsed Pt
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NMR thermometer was used to measure the tem-
perature of a 3He cell. The thermometer was cal-
ibrated against a nuclear orientation thermometer
of ®°Co in hep *°Co single crystal and thereafter
corrected for the ordering temperature of solid
%He on the melting curve.? A Straty-Adams-—type
capacitance pressure sensor® was used.

Samples were formed at constant volume by us-
ing the blocked capillary method. The 3He used
had a *He content of 3 ppm. The cell was packed
with a sintered silver sponge composed of 700-A
particles. The available volume was 0.16 cm?
with a surface area of 5.8 m®, Since the gap be-
tween the sintered material and the diaphragm of
the capacitance sensor has a strong influence on
the relaxation time, we made the gap as small as
possible by compressing the indium O ring be-
tween them.

We concentrate on a sample with molar volume
of 24.19 cm?® unless stated otherwise. We refer
to the results of different molar volumes when
necessary. The results of pressure measure-
ments are shown in Fig. 1. We deal with the raw
data of pressure for the present, although a pres-
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FIG. 1. Pressure vs inverse temperature. P, indi-
cates the pressure at high temperature which is not
associated with nuclear magnetism. Data are a com-
posite of three runs. Arrows indicate the direction of
measurements. A first-order phase transition is evi-
denced by the discontinuous change in the pressure at
Ty=1.01 mK. The line above Ty indicates a least-
squares fit of P—Py=61.4/T —77.2/T?+36.0/13 mbar
(' in mK). The line below Ty shows P— P, =2.2T"
(mbar).

sure correction is required as explained in detail
later. Data were taken after the complete relaxa-
tion of the pressure to equilibrium. The results
were fitted up to the third-order term in the
range above the ordering temperature by

P=P,+A/T +B/T*+C/T?,

where P,, A, B, and C are constants independent
of temperature. A, B, and C are 61.4 mbar mK,
- 717.2 mbar mK?, and 36.0 mbar mK?, respective-
ly. This is the first case in which pressure meas-
urements yield terms of higher order than the 1/
T term. The measured volume dependences of

the coefficients are A «c V38#2 Boc Vo1#3 and C

o V78 tS-

The discontinuous change in pressure, AP, in
Fig. 1 shows the nature of the first-order phase
transition, which is confirmed by the rapid de-
crease of the ®He signal at 250 kHz in an NMR
cell installed separately. The ordering tempera-
ture Ty was precisely determined as explained in
the following. The time derivative of pressure,
dP/dt, through the ordering temperature was plot-
ted against a number of set temperatures, 7, of
the cell. According to the relation dP/dt o (T
~T)/Ry, T yields a precise T when dP/dt is in-
terpolated to zero in the plots of dP/dt vs T,
where Ry is the Kapitza resistance between the
sample and the cell. T, of samples with molar
volumes 24.19, 24.07, 23.85, and 23.72 cm® were
1.01, 0.93, 0.77, and 0.69 mK, respectively,
which varied as V?'°-1#0:2,

The time evolution of the pressure through the
phase transition is shown in Fig. 2 together with
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FIG. 2. Pressure and temperature vs time. This run
is concentrated on the change in pressure through or-
dering. The pressure rise at 0.99 mK and the pressure
depression at 1.02 mK correspond to passing through
the phase transition from above and below T'j.
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the temperature. After the temperature was set
at 0.99 mK, 25 h were needed to finish the transi-
tion completely. This long time is due to the re-
lease of the latent heat associated with the first-
order phase transition, and is essentially differ-
ent from the short relaxation time on the order

of an hour in temperature regions above and be-
low T y. As shown in Fig. 2, little change in pres-
sure was observed in the first 14 h after setting
the cell temperature below Ty. This duration is
the time in which a large portion of the solid *He
that is contained in the sintered sponge releases
its latent heat and its temperature becomes low-
er than 7'y. After the temperature of the solid
%He in the sponge decreases below T, the pres-
sure in a portion of the solid *He which is active
with the pressure sensor begins to change. Note
that the solid helium in the sponge hardly con-
tributes to the pressure because of difficulty in
transmission of pressure in the sponge with

small pores. The same situation occurred in set-
ting the temperature of the cell above T, where
the pressure hardly changed in 47 to 60 h in Fig.

2 until the temperature of the helium in the sponge
rose above Ty.

The value of AP was determined to be the differ-
ence between two inflection points in Fig. 2. AP
varies as AP « V!, indicating that AP varies as
a first power of the exchange interaction. This
is in strong contrast to the fact that the tempera-
ture variation of pressure above Ty is mainly
dominated by the second power of the exchange in-
teractions. Therefore, information on the ex-
change interaction might be deduced from AP if
a theoretical expression for AP were available.

If one calculates the entropy difference through
the ordering, AS, from the Clausius-Clapeyron
relation AP = - AS(dT y/dV) together with AP =6.0
mbar, one gets AS=0.133R In2. As explained be-
low, the entropy change will be used to correct
the pressure for change in volume of the cell.

The pressure in the ordered state is expressed
as P=P,-DT*, where P, and D are constants in-
dependent of temperature. D=2.2+0.3 mbar
mK~* was obtained. The temperature dependence
of pressure and the volume dependence of D as
V- %+10 are in agreement with the antiferromag-
netic spin-wave theory. Since we know the vol-
ume dependence of the pressure in temperature
regions above and below Ty, we can obtain the
entropy at any temperature by integration of the
pressure with volume followed by differentiation .
with temperature. The entropy at high tempera-
ture is calculated to be 0.338R In2, which is the
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sum of the entropy below Ty, 0.065R 1n2, the en-
tropy change through ordering, 0.133R In2, and
the entropy above T, 0.140R In2, respectively.
It seems that there is no new ordering below T
obtained in this work since the present T'y is con-
sistent with T, measured on the melting curve?
and we have lowered the temperature down to 7/
T,=0.47. A small entropy at high temperature
suggests a correction to the pressure measure-
ments. The small change in pressure might be
because the volume constancy in pressure meas-
urements is not maintained as a result of a small
effective volume for the pressure sensor. The
relation between the measured slope dP/dT and
the desired constant-volume slope (8P/3T), is*

(.8_1_3>:d‘£ 1+1 d_V
aT ), dT ’

kV dP

where k is the compressibility of helium. If the
whole volume of helium in the cell contributed to
the pressure, the last term would give a 2.2%
correction. However, because of small pores in
the present silver sponge, only a small portion
of the cell close to the pressure sensor is active
and the effective volume V is small, so that the
correction term is larger. If the entropy at high
temperature should be R In2, the correction fac-
tor to pressure measurements has to be scaled
to 2.95. The entropy discontinuity AS is then
scaled to 0.394R In2. Incidentally, AS for differ-
ent molar volumes between 24.07 and 23.72 cm?®
is (0.127-0.132)R In2, which scales to (0.376~
0.390)R In2. The entropy discontinuity through
the ordering turns out to be almost constant with
decreasing molar volume.

With use of the notation of the four-spin ex-
change model,® the high-temperature expansion
yields the pressure-versus-temperature relation:

P=B_<l§_e_z+_1_2%+_L32&>_

8\T 8V 3T° a8V 6T° 3V

If our measurements are scaled to the correct
value of pressure, e,=11 mK?, ¢,=25 mK®, and
e4=18 mK* are obtained by volume integration of
the pressure coefficients A, B, and C whose vol-
ume dependences are known. These values are
in agreement with e, =13.2 mK? and e, =24.1 mK®
of Halperin et al.® and e, = 12 mK® and e, =28 mK?
of Dundon and Goodkind.” Note that e, and e of
these authors are corrected to molar volume
24.2 em® e,=11 mK? and e,=25 mK?® derived in
the present study do not yield the solution for the
exchange interactions within the framework of
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FIG. 3. The relaxation time to the pressure equili-
brium vs temperature. The arrow indicates the order-
ing temperature.

the four-body exchange interaction model when
combined with 6§ =—-2,6 mK and B=-2,7 mK2®
However, J,=-0.20, J,=-0.48, J,=-0.20, K,
=~0.40, and K, =-0.36 mK are the closest val-
ues to the solutions and they give e, =12 mK?, e,
=21 mK®, 6=-3.4 mK, and B=-2.1 mK?,

The relaxation time 7 to the pressure equilib-
rium is shown in Fig. 3. The relaxation time in
the region Ty to 10 mK varies as 24007 '-* sec
(T in mK), which yields a Kapitza resistance of
the order of Ry =10° K m?>/W by using 7=RyC,
where C indicates the specific heat calculated by
the present values of e,, e;, and e,. In the or-
dered state 7 varies as (6000+2000)T3 sec, which

yields a Kapitza resistance of the order of 10° K
m?/W because the specific heat in the ordered
state behaves as T3,

In conclusion, we have presented the first
measurements of the pressure of solid *He through
the ordering temperature. We have obtained high-
er-order terms than the first-order 1/7T term in
the pressure versus temperature relation, and
the pressure discontinuity associated with the
first-order phase transition. We have also inves-
tigated the pressure in the ordered state and the
Kapitza resistance between solid *He and metal
particles.
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