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New Phonon Effect on Itinerant-Electron Ferromagnetism
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This paper reports a study of the effect of the electron-phonon interaction on the mag-
netization below the Curie point of an itinerant-electron ferromagnet. From a numerical
calculation on a simple model, it is found that the size of the effect can be much larger
than the generally assumed value of -&( D/&F in the units of Bohr magneton per atom,
where ~D and &F are, respectively, the phonon Debye frequency and the electron Fermi
energy.
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It is widely believed that the possible effect of
the electron-phonon interaction on the magnetism
of a metal is not of quantitative importance. ' Dis-
cussions to justify such a conclusion, however,
do not appear convincing enough, and currently
controversies are still going on. ' ' The purpose
of this Letter is to present a new, interesting re-
sult of a simple model calculation which, contrary
to the prevailing view, strongly suggests that in
itinerant-electron ferromagnetism the electron-
phonon interaction might be playing a role much
more important than generally thought. While
previous works were concerned about the spin
susceptibility of a. paramagnetic metal, in this
Letter we study the magnetization behavior below
the Curie point of an itinerant-electron ferro-
magnet. In principle, the size of the possible
electron-phonon interaction contribution, M~, to
magnetization is expected to be very small, 1M~1
-k&u D/e F

= 10 ' in units of Bohr magneton per
atom, where wD is the phonon Debye frequency
and &F is the Fermi energy of the electrons.
Quite surprisingly, however, the model calcula-
tion indicates that M~ can be much larger than
tha, t, by a, factor of -10 to -10'.

In order to make the discussion simple, in this
Letter I treat the situation of zero temperature.
The starting point is to note that in a metal the
phonon contribution to the energy, E~, as well as
the electron part, E„depends on the magnetiza-
tion M of the conduction electrons of the metal;
the phonon frequency is screened by the conduc-
tion electrons and the screening behavior changes
with the spin splitting of the bands. The equilib-
rium value of the magnetization is to be obtained
by minimizing the total energy with respect to the
magnetization M,

&E, (M)/BM + BE~(M)/&M = 0.

Usually the second term of Eq. (1) is completely
neglected.

As can be seen from Eq. (1), in our discussion
it is most essential that we use the same model
and approximation in dealing with E, (M) and

E~(M). Under such requirement the only possible
choice at present may be to use the jellium mod-
el, with some extension, and the mean-field ap-
pr oximation.

If we put the electronic density of states as
N(e), and the exchange interaction between elec-
trons as V, the electron part of the energy in the
mean-field approximation is given as

E, (M) =g [f "~~(~)d~ ——,'I n.'], (2)
0=+

where eF, (M) is the Fermi energy of the + -spin
electrons measured from the bottom of each
band, and n, =n(1+M) is the number of + -spin
electrons in the system. Note that n, + n =2n
and M = (n, -n )/2n. The Stoner theory of itin-
erant-electron ferromagnetism is to determine
the equilibrium value of magnetization by mini-
mizing E,(M) alone.

As for the phonon energy, at zero or low tem-
peratures it is represented by the zero-point os-
cillation contr ibution,

E&(M) =~& Q, flu, (M),

where co, is the phonon frequency with wave num-
ber q, and sum over phonon polarization is under-
stood. As mentioned already we adopt essentially
the jellium model, and we use the Debye approx-
imation. Then we have only longitudinal acoustic
phonons and the phonon frequency is related to
the sound velocity s(M) as u&, (M) =s(M)q.

In the present model and approximation the
phonon frequency in the ferromagnetic state is
obtained as'

n. 1,(q)l
P () -()

1+ I'(q)f &,(q)+~ (q)]
'

where 0, is the bare phonon frequency, g (q) is
the electron-phonon interaction constant, V(q)
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= 47re'/q' is the Coulomb repulsion between elec-
trons, and F~ (q) =F, (q)/[1 V-F„(q)]are the ex-
change-enhanced Lindhard functions of + -spin
electrons. Without the exchange effect in the
screening (V=0) and in the paramagnetic state
[E+(q) =E (q)], the result of Eq. (4) reduces to the
familiar one. The sound velocity s(M) as a func-
tion of magnetization is obtained by taking the
limit q -0 in Eq. (4) as' ~,(M) = s (M)q with

N, (M) N (M)
1 —VN~(M) 1 —VN (M)

In the above, N, (M) [=Iim, ,E,(q)] are the densi-
ty of states of ~-spin electrons at the Fermi
surface under magnetization M, ' N(0) is the
density of states at the Fermi surface in the
paramagnetic state, s, =0P, /[8me'1V(0)j'~' is the
Bohm-Staver sound velocity, Qp& being the ionic
plasma frequency, and ( is introduced as 0,'
—~g(q)'/V(q) = gs, 'q'. The parameter $ repre-
sents deviations from the pure jellium model;
for the jellium model ( = 0 since there ~g(q)~'/
V(q) = Q pi' = O,'; if $ & 0 (( & 0) the phonon is harder
(softer) than in the jellium model.

Thus, the phonon part of the energy is given as

E (M)/NW= ~(ks qm/W)[s(M)/s ]
-=a [s(M)/s, ],

where N is the total number of atoms in the sys-

tern, 8' is the width of the electron band, q is
the Debye-cutoff wave number (N=q '/3m'), and

s(M)/s, is given by Eq. (5). As for the coefficient
a of Eq. (6), note that a=S&uD/W=10 '.

At first glance, since E~(M)/NW™10 ', where-
as E, (M)/NW 1, the electron-phonon interaction
effect may appear totally neglegible if we are to
determine the equilibrium magnetization only
within an error of -1%. As our later numerical
example will demonstrate clearly, however, such
reasoning is not warranted. Suppose the mini-
mum of E, (M) alone is located at M=M, . The
problem is how far the location of the energy min-
imum would shift from M, if we include E~(M)
into consideration. Here note that generally the
variation of E, (M) becomes small in the neighbor-
hood of the stationary point of M, M„near M, the
size of variation in E, (M) may not necessarily be
much larger than that of E~(M).

We are now ready to carry out numerical com-
putation on E, (M) and E~(M). In the present l,et-
ter we use the following form of density of states:

(7)

The shape of N(e) is illustrated by the lower part
of Fig. 2. As for a in Eci. (6), we assume a=10 '.

The result of the numerical calculation is given
in Figs. 1 and 2. In Fig. 1 is shown how E, (M),
E~(M), and E, + E~(M) change with M/Mo for the
case eF/W=0. 5, where M, is the maximum pos-
sible magnetization. All of the three energies
E„E~,and E,+E~ are plotted with the same en-
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FIG. 1. The magnetization dependence of &~(M) &p {&~) and E, {&~) +&~ {~») for the case of &F/W =0.5 in the elec-
tronic density of states of Eq. {7) shown in the lower part of &ig. 2. All the energies are measured in the same
unit of N&, although from different origins. ~&~o is the maximum magnetization and ~ =~cV(0). Note Mo is different
for different &F/&.
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FIG. 2. The equilibrium magnetization with (real
lines) and without (broken lines) the phonon effect, as
a function of V=PiV(0), for two different locations of
the Fermi energy in the density of states of Eq. (7)
shown in the lower part.

ergy scale in the unit of ÃTV, although from dif-
ferent origins. As anticipated, near the station-
ary point of E,(M) the size of the M dependence
of E~(M) can be as large as that of E, (M); the
location of the minimum of E, (M)+E~(M) shifts
appreciably from that of E, (M) alone. A typical
situation is shown in Fig. 1(a); by I:he phonon ef-
fect the magnetization is reduced by as much as- 30 jg, from M/M, =0.35 to -0.25. In the case of
the smaller exchange interaction, V= VN(0)
=1.006 [Fig. 1(b)], the Stoner magnetization of
M/M, = 0.2 is totally destroyed.

In Fig. 2 I show how differently the magnetiza-
tion would be modified for two different occupa. -
tions of the electron band. Note that with Eq. (7)

the cases of sF/W = x and 1 —x are equivalent.
I carried out similar calculations for several

different values of eF/W=0. 1 (0.9), 0.2 (0.8), and
0.4 (0.6) with the same density of states of Eq.
(7) and the result is found to be qualitatively sim-
ilar to that of Fig. 2(b).

An important point in the result of Fig. 2 is
that how M~ changes with V is quite different for
different locations of eF in the density of states:
While in Fig. 2(b) the phonon effect is generally
large and increases with increasing V, in Fig.
2(a) the phonon effect is generally small and de-
creases with increasing V. With this result let
us see how we can understand the drastic differ-
ence between the magnetization behaviors of Fe¹i
alloys and Ni (or Fe)." In a very crude view,
these two systems have nearly the same form of
the density of states but different locations of ~F.

It is well known that in FeNi alloys the temper-
ature dependence of magnetization is anomalous";
with increasing temperature the magnetization de-
creases much faster than, say, in pure Ni. Since
in these alloys V is considered rather large such
magnetization behavior implies that these sys-
tems belong to the case of Fig. 2(b); eF is not
located at or very near the maximum of N(e }.
Note that the same conclusion on the location of
EF was required' to account for the observed large
magnetization dependence of elastic constant. "

In Ni the phonon effect on magnetization appears
much smaller. " Since P is considered to be not
small in Ni, it should belong to the case of Fig.
2(a); eF is at or very near the maximum of the
density of states. Earlier' I reached the same
conclusion on the location of ~F to explain why
the magnetization dependence of the elastic con-
stants is much smaller than and opposite to the
case of FeNi alloys» Note that the size of M&
can be changed by changing the parameters a
and $; smaller a and larger $ make the phonon
effect weaker.

There is an additional support to the above
analysis on the difference between FeNi and Ni.
It is concerned with the magnetic field dependence
of sound velocity in the ferromagnetic state of a
metal. Let us put Ds(H)/s(0) =A(tu~/W), where
s(H) =s(0)+ As(H} is the sound velocity under a
magnetic field H, and M~= B(If&a D/W}. Then,
from a perturbational treatment of Eq. (1)," it is
straightforward to obtain the relation A = —B.
If B= —10' for the FeNi alloys as we propose, on
the sound velocity we should observe a large posi-
tive magnetic field effect corresponding to A = 10'.
Actually such a large and positive magnetic field
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effect was observed in the FeNi alloys, while in
pure Ni the magnetic field effect was not appreci-
able. "

Finally, note that in Fig. 2 we varied M/M, by
varying V for T = 0. In reinterpreting the result
of Fig. 2 by appropriately translating the role of
V to that of T we should note that the phonon ef-
fect on magnetization is enhanced by the thermal
excitation of phonons. With such enhancement
effect, ' which is proportional to - T/8 and starts
from T-0/5, 8 being the Debye temperature,
the size of phonon effect can be larger for higher
temperatures (smaller M) than for lower temper-
atures (larger M) even in the situation of Fig.
2(b).
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The spectral density of the voltage noise has been measured in current-biased resis-
tively shunted Josephson junctions in which quantum corrections to the noise are expected
to be important. The experimental data are in excellent agreement with theoretical pre-
tions, demonstratirg clearly the contribution of zero-point fluctuations that are generat-
ed in the shunt at frequencies near the Josephson frequency and mixed down to the meas-
urement frequency.
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In a recent Letter, we' considered the effects
of quantum corrections on the voltage noise in a
current-biased resistively shunted Josephson
junction. For measurement frequencies much
less- than the Josephson frequency and for a heavi-
ly overdamped junction we predicted a spectral
density for the voltage noise S„(0):

S„(0) 4kel' 2eV(~l) (eV )
Here, Io and R are the critical current and shunt
resistance of the junction, I and t are the cur-
rent and voltage, and RD is the dynamic resis-

tance. Etluation (1) is based on the assumption
that the noise arises from equilibrium noise cur-
rents in the shunt resistor with a spectra, l density

Sz(v) =(2hv/R) coth(hv/2h sT)

=( 4hv/R)/[exp( hv/ksT) —1] '+~) (2)

at frequency v. The first term on the right-hand
side of Eq. (1) represents noise from the resistor
at the measurement frequency, while the second
term arises from noise mixed down from frequen-
cies near the Josephson frequency. In the limit
eV»k pT, the latter term represents zero-point
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