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vergence was considerably slower than before,
but agreed with the previous SF state calculation.
M was found to be linear in H,, at least up to

H g, with a slope slightly less than the virtual-
crystal—approximation value. At higher H,, dM/
dH , decreases noticeably, becoming greatly re-
duced as M saturates.

H g is the field at which E g crosses below the
IF exchange-flip state energy (E;y); the results
shown in Fig. 2 agree with the data. For x=0.55,
E ¢ becomes equal to, but not less than E ¢,
hence for x¥ = 0,55, no SF occurs. This leveling
off of H g with dilution is directly attributed to
the existence of the “flip” states. Since E; lies
below the AF energy, the H, required to bring
E ¢r below the former is greater than for the
latter.

The calculated AM at H g in sample F is shown
in Fig. 3, in the same manner as for the “ex-
change flips”. Note that the calculated AM great-
ly exceeds the observed one, a result not under-
stood but undoubtedly related to the greater com-
plexity of the SF state than has been considered
in this model. Further details of this work, in-
cluding the temperature dependence of H gz and
the “exchange-flips” fields, will be published
elsewhere.
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A description of spin-glass dynamics at low temperatures, based on a ‘“harmonic”
theory, is presented. The Hamiltonian is approximated by a quadratic form in the spin
deviations from a particular local minimum, and diagonalized. The dynamics is governed
by the eigenvalue distribution p (). The validity of this description is supported by com-
puter simulations. These suggest that p(0) #0 in two and three dimensions, implying a
logarithmic decay in time of the spin autocorrelation function at low temperatures.

PACS numbers: 75.40.Dy, 75.10.Hk

The unusual low-temperature properties of
spin-glasses are thought to be due to the very
large number of metastable states which exist
in these systems: the Hamiltonian has many
local minima of comparable energy. Within the
context of the Sherrington-Kirkpatrick model,*
whose solution plays the role of a mean-field

theory for spin-glasses, the number and proper-
ties of these minima may be calculated exactly,?
but for more realistic models analytical progress
is difficult. At low temperatures we will assume
that at any instant of time the spin configuration
is “close” to that characterizing one of the local
minima. Dynamical processes are then of two
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types: (i) small fluctuations in the neighborhood
of a particular minimum, and (ii) thermally
activated transitions from one minimum to anoth-
er (“barrier hopping”). Until now it has been
assumed that the latter processes are primarily
responsible for the observed slow decays in spin-
glasses. The purpose of this note, however, is
to point out that for low temperatures, and not-
too-long times, a theory based on small fluctua-
tions provides a quantitatively accurate descrip-
tion of the dynamics of two- and three-dimension-
al systems, and should be relevant for the inter-
pretation of neutron-scattering, MOssbauer,
muon-spin-resonance, and ac susceptibility ex-
periments.

For clarity of presentation we consider explicit-
ly the case of planar spins, the case for which
the computer simulations were performed, al-
though the results are readily generalized. The
Hamiltonian is

H==37,Jd;;c08(6;,-6,),
14J
where the exchange interactions J;; are random
variables which are assumed given. We take the
spin dynamics to be described by the Langevin
equation

do;/dt=— 8H/30,+f,
==23Jd;;8in(6; - 0,)+f,, (1)

where the kinetic coefficient has been absorbed
into the time scale, and f,;(¢) is a white-noise
source generated by the coupling of the spins to
the “lattice”:

(Fi)f;(8))=2T 6, ;0(t=1"). (2)

[The addition of an “inertial” term 7§, to the left-
hand side of Eq. (1) does not change the long-time
behavior, which is our primary interest. The
effect of a precessional term for the case of
Heisenberg spins is more subtle. For the long-
range Sherrington-Kirkpatrick model such a term
makes only a quantitative difference in the long-
time limit.?] In the neighborhood of a particular
minimum {6} we write 6;,=6,°+6; and linearize
Eq. (1) in the §;:

db;/dt=-3A,;0,+f;,
J

a,- (2
47 \00, 80, /,

=0;,;22Jirc08(6° = 6,0) =J;;c08(6,.° = 60).
k

Expanding the 0-i in terms of the eigenstates of
the Hessian matrix A, §,=7,,(i|))0,, we obtain

dody/dt==x0x+f»,
<f>\(t)f>\'(t')>=2T 5>\. N ) ,
whence

(ONDGn(8))=0x, \AT/N) exp(=x|t - ¢t’

). (3)

Introducing the average spin autocorrelation
function

a(t) =N {cos[6;(t) = 6,(0)]) (4)
i

and expanding to second order in the displace-
ments 6, gives, valid to lowest order in 7,
a(t)=1-T [(ax/NpM)[1 -exp(-rt)], (5)

where p()) is the [normalized, [ dx p(x)=1] eigen-
value distribution of the matrix A.

In the infinite-time limit, a(¢) approaches the
constant value a(») =1~ T f(d)\/)\)p()\), provided
the latter integral exists, which requires p(0) =0,
If there is a nonzero minimum eigenvalue A,,
then a(t) approaches the limit a(«) exponentially
fast, a(t) —a(=) ~exp(-2,¢). I, on the other hand,
the eigenvalue spectrum extends to zero, with
p(x) xa* as A -0, then a(t) —a(=) ~¢~* for large t.
This type of behavior is found? in the long-range
Sherrington-Kirkpatrick model, with x =4. Final-
ly, if p(0) #0 then for long times Eq. (5) gives

a(t)=1~-T[p(0)Int+a+0(¢t™V)], (6)

where o= [(d/\)] p() = p(0) exp(-2)]. This type
of logartihmic decay has been observed in Monte
Carlo simulations of vector spin-glasses.* We
will report below numerical evidence which sug-
gests that p(0) is indeed nonzero for two- and
three-dimensional spin-glasses. Note that Eq.
(6) cannot hold for arbitrarily long times since,
according to Eq. (4), a(¢) is bounded from below
by -1. We can overcome this problem by evaluat-
ing exactly, within the harmonic theory defined
by Eq. (3), the right-hand side of Eq. (4):

a(t)=N'1Z_)exP{—TZ;)7t'1| GNP —exp(-xt)]}.

Neglecting the i dependence of [(iI)1)| (i.e., set-
ting [(iIx)|=1/VN, would give a(t) =~ const P
a simple exponentiation of Eq. (6). The physical
origin of this slow decay is the existence of arbi-
trarily small eigenvalues of the matrix A, and the
small “restoring force” associated with displace-
ments in the corresponding eigenvector direc-
tions.
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To investigate the validity of the harmonic the-
ory we have performed computer simulations,
based on Eq. (1), for planar spins on square and
simple-cubic lattices. Nearest-neighbor inter-
actions J;; were assigned from a Gaussian distri-
bution of zero mean and unit variance. The time
t was discretized in units of A=0,05, {=nA, and
Eqgs. (1) and (2) written

9;(n+1)
=0,(n) - AZ,JU sin[ 6;(n) = 0,(m) ] +£,' (n), (7)

<f§’(n)fj’(m)>=2AT6i,]’ 6n.m . (8)

Equation (7) was simply iterated to obtain the
orientations at time (n+1)A from those at time
nA. The noise terms f;’(z) were taken to be in-
dependent random variables drawn from a Gaus-
sian distribution of zero mean and variance 2AT.
The initial spin orientations were chosen to be
independent random variables uniformly distri-
buted between 0 and 27. For some simulations |

q(n) ~1 —(Nn)"};,Z) 62(7) +(Nn2)‘12)\2 G () Ox(s) .

The discrete-time analog of Eq. (4) is
(G 6x:(8)) =85 2+ (T/N)(1 = AN) lr=s|

(particularly those at lower temperatures) the
system was first “quenched” to zero temperature
by successively aligning spins with their local
fields until the energy per spin decreased by less
than a specified amount (usually 10™!) after a
further ten scans through the system. Before
starting to monitor the spin orientations, Eq. (7)
was first iterated 2000 times (corresponding to
100 real time units) in order to allow the system
to attain equilibrium at the given temperature.

Following Binder and co-workers?*® we did not
directly compute the autocorrelation function a(¢)
since this tends to be very noisy. Instead we
computed the Edwards-Anderson order parame-
eter ¢(t)=N"23,(S,),2, where (---), indicates a
time average. In discretized time,

al) =)D 3 2 cosl,) = 6,(9)]. (@)

If we assume that the angular fluctuations are
indeed small, we can expand to second order in
the angular deviations 6; to obtain

(10)

(11)

In the thermodynamic limit the fluctuating quantities in Eq. (10) may be replaced by their expectation

values, giving

qgin)=1- (T/an)z:, {n(n = 1) = (2rn/MN)a ) +[2a,/(AA)2] (1 —a ™) a1+ O(T),

where a)=1- A\, Results for ¢g(rn), computed
with use of Eq. (9), are presented in Fig. 1 in

the form (1 —¢q)/T vs Int, where t=nA, for a 40
X40 system and a 10X10x10 system, at various
temperatures 7. Equation (12) suggests that, for
T sufficiently small, (1 -¢)/T should be a func-
tion of » only. This is borne out by the data,
especially in the two-dimensional case: The data
at different temperatures lie almost on a univer-
sal curve. The small systematic variations with
temperature evident in the three-dimensional data
presumably reflect the leading corrections to the
harmonic approximation and/or the effect of
higher-order terms in the expansion of the cosine
omitted from Eq. (10), or even the effects of bar-
rier hopping. All these effects will be more im-
portant at higher temperatures. It is not clear
why the deviations are more pronounced in three
dimensions than in two. The breaking away of
the data from the universal curve at long times,
which is apparent in the higher-temperature data,
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(12)

is easily understood: since g =0 by definition,
the function (1 —¢)/T is bounded above by 1/7,
a temperature-dependent upper limit.

To obtain an independent estimate for the limit-
ing universal curves we have evaluated numerical-
ly the right-hand side of Eq. (12) by the following
device. Starting from a particular metastable
state, the system was randomized by adding to
each angle 6; a small fluctuation 8,(0) generated
from a symmetric probability distribution with
variance B? (the results should be independent,
in the thermodynamic limit, of the particular
distribution used; we used both ‘“top hat” and
Gaussian distributions). The system was then
allowed to relax in a deterministic fashion by
use of Eq. (7) with no random noise, i.e., at T
=0. The spin deviations é',. (n) were continuously
monitored and the correlation function

C(n) =N"1336,(n)6,0)
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FIG. 1. Dependence of the Edwards-Anderson order
parameter ¢, computed with use of Eq. (9), on time?
and temperature T for planar spins in two (upper data)
and three (lower data) dimensions. The continuous
curves represent the prediction of the “harmonic”
theory and were computed with use of Eq. (13). The
upper (lower) abscissa refers to the two- (three-) di-
mensional data.

computed. In terms of the eigenvector ampli-
tudes é.)\,

C(n) =N_lz; é.)\(n) 9—)\(0)
=N-1L:[éx<0)]2(1 -7,

which follows from Eq. (7) with the noise omitted.
In the thermodynamic limit we can replace
[6x(0)]2 by its mean B? to obtain the normalized
correlation function

Cn) =C(n)/C(0) =N'1§_;,‘(1 - A",

The following result is now readily established:

m

n=1 =1
[1-gm))/T=2a/m 3 2 325 C(9). (13)

m=17r =18<0
This is shown by explicitly evaluating the triple -
sum and comparing the result with Eq. (12).
Equation (13) establishes a connection between
the function g(n), which describes the spin corre-
lations in thermal equilibrium, and the function
C(n), which describes the nonequilibrium relaxa-
tion of the spin fluctuations at zero temperature,
both calculated within the harmonic approxima-
tion. This approximation should be valid for the

calculation of (f(n), provided that we take B suffi-
ciently small. The simulations for é(n) show no
significant variations with B for 0,003 <B<0.1,
and the results should therefore accurately re-
flect the harmonic theory. The functions obtained
by computing the right-hand side of Eq. (13) are
shown, for two and three dimensions, by the con-
tinuous curves in Fig. 1. These are the desired
“universal curves” predicted by the harmonic
theory. They provide a quantitative description
of the data over a surprisingly large range of
temperature. It should be pointed out that these
curves do vary somewhat with the random num-
bers generated for the initial angular variations
9',.(0)—-the curves presented in Fig. 1 are typical.

Since the dynamics at all but the shortest times
is governed by the small eigenvalues of the ma-
trix A, we have tried to determine numerically
the behavior of p(x) as A = 0. To this end we
monitored, during the zero-temperature relaxa-
tion process described above, the total energy
per spin E(n) as well as the correlation function
C(n). ¥ p(x)~p* as » -0, it is easy to show
that C(n) ~ B?p,/(na)!** and E(n) ~E, +3 B%p,/
(2nA)***, where E, is the energy per spin of the
particular local minimum considered. Plots of
=InC and -In(—=dE/dn) vs In(nA) should give
straight lines with slope 1+x, 3 +x, respectively.
The intercepts of these plots determine the ampli-
tude p,. Analysis of such plots, including some
data from larger systems (5050 and 14 X14X14)
(details will be presented elsewhere), leads to x
=0.0+0.1 and p,=0.31+0.05 for the square lattice
and tox =0.1+0.1 and p,=0.20+ 0,05 for the sim-
ple-cubic lattice. Hence the data are consistent
with a constant density of eigenvalues at x =0,
although a small-power x¥ cannot be ruled out,
particularly in three dimensions.

Independent studies of the spectrum p(\) for
planar spins have been carried out by Huber et
al.,® by direct diagonalization of the matrix 4,
for relatively small systems (24 X24 and 8 X8 x8).
The behavior at small A cannot be reliably deter-
mined because of the finite-size effects. However,
a computation of the dynamic structure factor
suggests that the equations of motion 18;= -3 A,
X 5,. have long-wavelength, propagating “spin-
wave” solutions with a linear dispersion w=uk in
both two and three dimensions. This suggests
p(0) #0 in two dimensions, the value of p(0) de-
duced from the “velocity” « being in good agree-
ment with our own estimate., In three dimensions,
however, the dispersion relation w=uk suggests
p(x) <x¥2, provided that the “spin waves” ex-
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haust the spectrum. The origin of this discrepan-
cy is unclear at present. Note, however, that

a coarse rebinning of the histogram of Huber et
al., with use of bins of width unity in A, yields

a smooth density of eigenvalues with p(0) =0.17,
consistent with our estimate above.

As noted above, p(0)#0 implies logarithmic de-
cays in time of the spin correlation functions at
low temperatures. Such decays have been ob-
served in Cu-Mn(5 at.%) by Murani,” over several
decades in time (10-°-10-2 ), by combining re~-
sults obtained from neutron-scattering experi-
ments with use of the spin-echo technique and
results obtained from ac susceptibility measure-
ments, .

In conclusion, we note that the Langevin dynam-
ics used here has advantages over the convention-
al Monte Carlo approach, namely that it directly
simulates a realistic equation of motion, and

consequently might profitably be used for other
spin systems. Possible extensions of the present
work include applications to realistic Hamilton-
ians (e.g., spins coupled via the Ruderman-Kittel-
Kasuya-Yosida interaction) and magnetic field
effects.
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A new optical system incorporating a fast Ge photodiode has made possible the first
measurements at short times of the low-energy side of the photoluminescence spectrum
of a-As,S;. Two photoluminescence processes are separated by their dependence on

excitation energy, E, .

A number of observations suggest that the first step in the high-

E, process is the creation of delocalized excitations. The abrupt onset of this process
leads to the intimation that it arises from transitions across the mobility gap.

PACS numbers: 78.55.Hx, 72.80.Ng

Several years ago, Bosch and Shah' and Mura-
yama, Ninomiya, Suzuki, and Morigaki® suggest-
ed that the photoluminescence (PL) from a-As,S;
involved two processes. By extending the meas-
urements to lower PL energies, we have been
able to clearly separate two processes by their
dependence on excitation energy E,. It appears,
as suggested by Murayama, Suzuki, and Nino-
miya,® that at low E, the excitation process oc-
curs by transitions from localized ground states
to localized excited states. On the other hand, at
high E,, the excitation process seems to involve
transitions between extended states. The onset of
the new excitation process is very abrupt. This
suggests that it may provide a direct observation
of the mobility edge, the energy which separates

localized and extended states.

Three major difficulties had to be overcome be-
fore this experiment could be performed. Previ-
ous measurements were restricted to PL ener-
gies of greater than ~ 1.1 eV, the cutoff energy of
the best infrared photomultipliers. The severity
of this problem was not apparent to previous
workers for the following reason. The PL in the
chalcogenide glasses is extremely broad. Conse-
quently, the distortion introduced by the common
practice of plotting intensity per unit wavelength
versus energy instead of intensity per unit ener-
gy had the illusory effect of shifting the PL spec-
trum to energies high enough to measure with
photomultipliers. For the broad spectrum of
As,S, this shift can be as large as 0.3 eV. A sec-
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