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Nonuniversal and Anomalous Decay of Boundary Spin Correlations
in Inhomogeneous Ising Systems
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A triangular, half-infinite, nearest-neighbor Ising system is studied whose coupling
strengths close to the boundary are weaker than those in the bulk. The deviations decay
as -A/m~ with the distance m from the boundary. By means of a repeated star-triangle
transformation the boundary spin-spin correlation g(x) is studied for critical bulk
coupling. For y = 1 the behavior is g(~) - 1/r~ as ~—~, with a nonuniversal exponent
g depending onA. . For 0&y &1 anomalous decay g(~) - expI. -(r/&)' '] is found. Expres-
sions for g and ( in terms of A. andy are given.

PACS numbers: 05.50.+q, 05.70.Jk, 64.60.Cn, 75.10.Hk

We consider a half-infinite triangular lattice of
Ising spins 2 (see Fig. 1) with ferromagnetic
nearest-neighbor interactions. The couplings
may differ from column to column and are de-
noted by K,(m) and K,(m), with m = 2, &, . . . and
m =1, 2, . . . , respectively. We are interested in
the correlation g(x) between two spins at distance
r on the boundary of the system. McCoy and Wu'

showed that for a homogeneous critical system,
g(x) decays as'

g(r) -1/r" (x-~), q= 1.

They also studied the effects of a boundary mag-
netic field' and of random couplings' on g(r)
McCoy and Perk' studied bulk lattices with a sin-
gle column of deviating interactions.

Here we calculate for the first time, and by a
new method, boundary effects due to deviating
interactions in an arbitrary number of columns.
We study in particular the case

ous decay

g(~) -exp[-(~/()'- j,

1 —y '"" r(l/2y)sinh2K»'-»~

~
2A s'i'I ((1+y)/2y)

As y-0, Eq. (5) reproduces the exponential de-
cay common to homogeneous systems above criti-
cality, and $ =1/2A in agreement with Ref. l.

Qur method of calculation consists in succes-
sively transforming the initially given Hamilto-
nian H, into new ones H„H„.. . , which all refer
to a triangular lattice as in Fig. 1, but with dif-

K, (m) =K,.~ —A, /m~, i=1, 2, (2)

where the bulk couplings K,~ satisfy the critical-
ity condition' 2 sinh2K~ sinh2K~+ sinh'2K~ = 1,
and where A„A, &0. Equation (2) describes, e.g. ,
samples with a nonuniform temperature distribu-
tion. Later calculations simplify if we assume a
definite ratio between the A,. by putting

A, = 2A sinh2K», A, = 4A cosh2K~.

For %~=K~ we have A, =A, . Our results are the
following: For y&1 the asymptotic behavior (1)
remains unmodified. For y = 1 the correlation
function g(r) decays as a power with a nonuni-
versal exponent q given by

q = 1+A/sinh2K~.

For 0 &y&1 the correlation exhibits the anomal-

FIG. 1. The initial triangular lattice (solid lines).
Nearest neighbors in one column (in neighboring col-
umns) of spins are coupled by the K&(m) I.by the K2(m)].
Each bond E; depends only on the distance m of its
center to the line m = 0 (see scale). The dotted lines
show the equivalent hexagonal lattice with couplings p &

and p, I.their labeling, omitted from the figure, is de-
fined by Eq. (Va)]. This hexagonal lattice is again
equivalent to a new triangular lattice, of which a few
triangles are shown (dashed lines).
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ferent sets of couplings, viz. fK, (m, I)], IK,. (m,
2)], . . . [by definition K, (m, 0) =E,.(m)]. The
mapping is based on the star-triangle transforma-
tion, ' which replaces any "triangle" of bonds E„
E„and K, by a "star" of bonds P„P„and P, or
vice versa. Here P, =f, (K„E„E,) is implicitly
given' by

i cosh(p, +p~+p„) cosh(-p;+p, +p„) '

K,. = 4 log cosh(p&-p, +p, )cosh( p, +p& -p, )

with i, p, 0 cyclic. To obtain H„, from H„we
first replace each rightward pointing triangle in
the nth triangular lattice by a star (see Fig. 1).
This yields an intermediate hexagonal lattice.
We next convert this into the (n+ l)th triangular
lattice by replacing every leftward pointing star
by a triangle. In this second step at the boundary
a degenerate case occurs of stars that miss one
leg: These are simply converted into single
vertical bonds. The column coordinate m is as-
signed to the bonds of the nth lattice in the same
way as in the original lattice. Using this labeling
and employing the symmetry of the problem to
write f, (K„K„E,) =f, (K„K,) we ha. ve from the

(7a)

(7b}

first step

P, (m, n) =f, (K,(m ——,', n), K,(m, n)),

P,(m ——.', n) =f,(K,(m ——,', n), E,(m, n) },
and from the second step

P, (m, n) =f, (K,(m+ ~, n+ 1),K,(m, n+ 1)),
p, (m+ —,', n)

=f, (K,(m+ —,', n+ 1),E,(m, n+ 1)),
tanh'2P, (~z, n) = 1 —exp[ —4K, (2, n+ 1)],

where m=1, 2, . . . . The transformation (E,. (m,
n)] - fE,. (m, n+ I)) results explicitly if we elimi-
nate the P,. from Eqs. (7). It fully defines the
trajectory in Hamiltonian space. The equations
are easily iterated on a computer, ' but our pur-
pose here is to study them analytically. We re-
mark that even if the initial system was homo-
geneous, inhomogeneity will penetrate into it
from the boundary as one iterates the transfor-
mation.

Under this transformation averages of functions
of boundary spins satisfy simple recursion rela-
tions. Let g(r, n) be the correlation between two
boundary spins at distance r in the nth triangular
lattice. Then one easily derives

g(r, n) = —,'fl -exp[4K, (~, n)] j[g(r —1, n+1) +2g(r, n+1) +g(r+1, n+1)] (8)

for r =1, 2, . . . . With the conditions g(0, n) = 1
a.nd g(r, 0) =g(r) we find' from Eq. (8)

(9)

!
r

tions'

&K;/Sn=+, D;, (K„K,) &K, /&m, i =1, 2. (11)

n

f(n) = P (1 —exp[-4K, (—', j)]j.
j =1

(10)

Equations (9) and (10) show that g(r) is known if
we can solve K,(-,', n) from Eqs. (7). The r- ™
behavior of g(r) is, in particular, determined by
the n —™behavior of K,(2, n), and can be obtained
from it via a steepest-descent calculation of the
sum in Eq. (9}.

Our analytic treatment of Eqs. (7) is inspired
by a computer calculation. Starting from a homo-
geneous system we observed that after a small
number of iterations of the transformation the
K,. (m, n) become slowly varying in m and n.
Moreover they appear to tend to a similarity
solution K,. depending only on m/n. We decide
therefore to look for smooth solutions of Eqs. (7)
so that the differences K, (m+6m, n+M) -K;(m,
n) can be expanded in Taylor series. Eliminating
the p,. from Eqs. (7) and expanding to linear order
thus leads to the differential transformation equa-

The coefficients D, , (K„K,) =(-1)'(BK;/BP;)(~P;/
SK, ) are highly nonlinear in the K, . The bound-
ary conditions are K,(0, n) =0 and K;(~, n) =K;~.
Equations (11) together with their boundary condi-
tions give a full and exact description of all suffi-
ciently smooth solutions of the recursion of Eqs.
(7).

One can indeed find explicitly a family of simi-
larity solutions [K,(m/n), K,(m/n)] to Eq. (11).
For one of these (the "critical" similarity solu-
tion) K, and K, satisfy the criticality condition
at all m/n. Setting m =

2 in this solution' we find
analytically that exp[-4K, ( ,', n)] =1—/2n, which
via Eqs. (9) and (10) leads to the result q= 1 of
Eq. (1).

One might be tempted to treat the inhomogen-
eous system of Eq. (2) by linearizing around the
critical similarity solution. It turns out that this
is correct for y & 1, but that for 0 (y - 1 one has
to study the nonlinear equations (11). We solve
these exactly. After a transformation from the
unknowns K,(m, n) and K,(m, n) to new ones u(m,

11S9



VOLUME 47s NUMBER 17 PHYSICAL REVIEW LETTERS 26 OCTOBER j.$81

n) and u(m, n), and after substantial algebra, the
equations take a convenient form. The trans-
formation reads

sinh2K, = [(u' —u')/4uv] Q(u, u), (12)

sinh2K, = —Q(a, u),
V

Q(M, u) = 1 —
( ) — 1 —

( ) . (14)

Equations (12)-(14) map the supercritical domain
onto the triangle 0&u &v u +v & 2. Criticality cor-

responds to M +v =2. Finally we perform the so-
called hodograph transformation, "i.e., we con-
sider m and n as functions of u and v. The equa-
tions for m(u, u) and n(u, u) are linear and read

uBm/Bu =MBn/Bu, uBm/Bu =gBn/BM. (15)

The boundary conditions stated above become
u(0, n) =0, u(~, n) =Ms, and v(~, n) =us (the index
indicating bulk values). Equations (15) are solved
by separation of variables. The solutions are
(modified) Bessel functions I„and K„with n =0, 1.
The boundary conditions lead us to consider su-
perpositions with weight w(p) of the type

m(u, u) =u f,

dpi'(p)

exp(- pus)I, (pu)[K, (pu, )I,(pu)+ I(p us) K( pu)]

n(u, u) =up dPw(p) exg(-pan)I, (pu)[K, (pus)I, (pu) I,(p-us)K, (pu)].

These are exact solutions of the flow problem
(11). The results (4)-(6) follow from analysis of
Eqs. (16) form -~ at fixed n (regime I) and for
n - ~ at fixed m (regime II). The weight function
u(p) is prescribed by matching it to the initially
given system (2) in regime I. It determines in
turn the asymptotic behavior in regime II, from
which we have to extract our results.

To make contact with Eq. (2) we let w(p)
= Cp '" for p- ~. The analysis in regime I
shows that then 0K, = -A;/m' provided we choose
v = 1/2y and C = 4m ''sA""/I (I/2y ) sinh4K». In re-
gime II, for small m, ~ must be small because
of the rn =0 boundary condition. For a system
close to criticality we can therefore put v =2 —6v,
with 6v small. Asymptotic expansion in regime
II then gives M(m, n) and 5u(m, n) for n- ~. From
Eqs. (12) we find, by substituting" 2 —5u(&, n)
and M(~, n), the desired quantity exp[- 4K, (&,n)]
for n -~. Via Eqs. (9) and (10) this leads to our
results (4)-(6).

We rema, rk that for n —~ the solution (16) can
be shown to approach the similarity solution men-
tioned above. The fact that only the asymptotic
behavior of ~(p) enters our considerations im-
plies a universality property for inhomogeneous
lattices. Finally, the theory presented here can
also be used to calculate, in principle, other
boundary correlations and the boundary magneti-
zation. Deviations from homogeneity towards the
low-temperature side (A, (0) have not been dis-
cussed here: These require different rn =0 boun-
dary conditions for the differential equations. De-
tails will be published elsewhere.
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