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A system is proposed for detecting the effect of a weak classical force on a macro-
scopic mechanical oscillator. The novel feature is a type of ac bridge coupled to a
SQUID amplifier. A detailed sensitivity calculation for one type of bridge excitation is
reported which shows what is required to reach the standard quantum limit. " Another
type of excitation should make it a "back-action evasion" device capable of exceeding
the standard quantum "limit".

PACS numbers: 06.30.6r, 03.65.-w, 07.50.+f

At what level of sensitivity mill one reach a
fundamental limit for the measurement of a weak
impulsive classical forceps This question has
arisen from the effort to detect gravity waves
from astronomical sources. ' If the force is
sensed by its effect on a mechanical oscillator
with angular frequency &, in an initially unexcited
state, the Heisenberg uncertainty principle seems
to imply a lower limit to the detectable force,
corresponding to an impulse which changes the
oscillator's energy by about 5&,. Caves etal. ,

'
Hollenhorst, ' and Unruh4 have reviewed the argu-
ments that lead to such a "standard quantum
limit, "have concluded that this limit is not fun-
damental, and have described newly invented
measurement strategies which, in principle,
will exceed this limit. These measurement
strategies are called "back-action evasion" or
"quantum nondemolition. "

We propose below an oscillator-transducer-
amplifier system which should be able to compare
directly three distinct conventional measurement
strategies and a back-action evasion strategy.
Therefore it is capable of addressing questions
in quantum measurement theory experimentally.
It also looks attractive as part of a gravity-wave
detector. In passing, we note that the electrical
circuit is potentially more sensitive than conven-

tional electronics for measuring any quantity
which can be made to vary a capacitance.

After defining the system, we report on a de-
tailed classical sensitivity calculation for one
conventional measurement strategy or mode of
operation. It shows that it is feasible to reach
the standard quantum limit, ' which is the minimal
precondition for testing quantum measurement
theory. The other modes and the role of back-
action evasion will be discussed in a future pub-
lication.

The system is based on the "continuous single
transducer" measurement scheme of Caves etal. '
(see also Thorne etal. '). The mechanical oscilla-
tor can be realized by an accelerometer of natur-
al frequency v, as shown in Fig. 1(a). Attached
are three capacitor plates ( V„V„and V,), each
of area A, separated by a mean gap D. A force
F(t), applied to the outer plates (mass m), causes
a relative displacement x(t) of the inner and the
outer plates.

This motion is sensed by the electrical circuit
shown in Fig. 1(b). It is clearly a type of ac
bridge. A low-input-impedance amplifier (a
SQUID) detects the bridge imbalance. ' The unu-
sual feature of the bridge is the electrical reso-
nance, chosen to be at some frequency ~„be-
tween the detector arm (L„+L, ) and the capaci-
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FIG. 1. (a) A schematic diagram of an accelerometer. An impulse applied to the outer plates causes the relative
coordinate x to oscillate. (b) The electrical schematic of the bridge circuit used to sense the motion of x. Noise
generators are labeled with italic letters.

1184 1981 The American Physical Society



VOLUME 47, NUMBER 17 PHYSICAL REVIEW LETTERS 26 QGTQBER 1981

given bytors. Johnson noise caused by lossy circuit ele-
ments is represented by the voltage generators
vj v2 and v~ Following Giff ard and co-work-
ers, ' the noise in the SQUID is represented by (1)
a s
(2)
ref
sha
les

T

C, ,(x) '= C, -'[1~x(t)/D]
= (D/~, A)[1~ x(t )/DJ.

(2)

crees input norse voltage generator vz(t), and
Then, using standard circuit theory and the fol-

an equivalent additive noise generator i(t),
lowing definitions (see also Fig. 1j: P~ jterred to the input current. In this paper we

11 assume that the bridge exitation I~ is noise-
+~RL +~If Jt R It R I& 2 i 0
~, =-Q, /cu, =-L/A, we arrive at the classical equa-

o a good approximation the capacitances are
tions of motion for the mechanical variable x(t
and the current j(t)':

q(t)+ r, 'j(t)+ &u, 'q(t) = —(LD) 'p~(t) x(t)+ L 'v(t), (1)

x(t) +((d|/Qi) x(t)+ (di x(t) = -(pD) Vp(t) g(t) + m F(t)+ p, f(t),
where we have dropped terms of higher order
than first in x(t)/D; p, is the reduced mass and

f(t) is the Langevin force responsible for Brown-
ian motion.

The mechanical and electrical oscillators are
coupled by a controllable time-dependent voltage
V~(t)." We can enumerate at least four different
interesting modes of operation for the device:
(a) resonant bridge, V~(t) = V Ocos(u, t; (b) me-
chanical-to-electrical parametric upconverter,
V~(t) = V, cos(&u, —ur, )t; (c) mechanical paramet-
ric amplifier, V~(t) = V, cos(m, +&@,)t; and (d)
back-action-evasion device, V~(t ) = V, cos~, t
~ costa, t. As indicated by their labels, modes
(b) and (c) are electromechanical parametric
processes that are directly analogous to well
known (purely) electronic parametric processes. "
Mode (d) is a way to realize the "continuous sin-
gle transducer" measurement scheme of Caves
et al. ' Throughout the remainder of this paper
we will restrict our attention to mode (a), which
is an intermediate case not ordinarily discussed.

The sensitivity of the system is calculated in
four steps:

First, we find an approximate solution for the
Fourier transform of the mechanical variable,
x(&u), by transforming Eq. (2) and substituting into
the transform of Eq. (1). Assuming &u, »cu„we
may drop the terms x(e +co,) and other terms can-
cel to first order. The result, peculiar to mode
(a), is that the response to an external force is
unaffected by the coupling, the only change being
the addition of a back-action noise force propor-
tional to v.

Second, with x((u) determined, we solve the
transform of Eq. (1) for the observed output,
jcof(&u)+ i(&u). It is convenient to express this re-
sult as a quantity X(&u), which we call the appar-
ent displacement. It is extracted by synchronous-
ly demodulating the output and multiplying the low-
frequency components by [( V,/2LD)ju, H, ((u)]
where j—= v'- 1 and 1I,((u) -=[ tv, (- 2(u+ j/v, )]

Third, we calculate the "signal" and the "noise"
content of the apparent displacement. The signal
is X~(cu) =G, (~)E(ar)/m, where G, (~) -=[ —v'+ j(~,/
Q, )sr+ &u, '] ' is the usual harmonic oscillator
response function. The noise has a power spec-
tral density

s (~) =lG, (~)l' —,s, (~)+—, 2L' la, (~)l's„(~,) +2 l v l&, (~)l 's;(~,)+2 v s,(~.).2 i 2 ~0 - 2 1 (2JD 2 D

Fourth, we filter the apparent displacement for
optimal detection of an impulse applied at a known
time. By standard methods we are able to calcu-
late the mean square noise-equivalent impulse
(p„') of the optimally filtered signal. We express
this final result in units of the energy quantum by
defining the impulse noise number n»"

nih(u, =-, (p„') = —— ' d(u . (4)
1 "

IG, (&u)l
~

-" sx~
This expression was evaluated by finding the poles

of the integrand with a computerized iterative
Newton-Haphson technique and then summing the
residues. "
The results of this calculation of nI can be shown

to be a function of only four dimensionless ratios
of the physical parameters: the total electrical
noise number, u~ =—[S„(~,)S,(~,)1"2/h~, ; ~ =- (a,&/
S(u, Q,)/pz~; &

=—(Vo/D)' ((u,/(u, ) (Co/p(u, '); and y
=-((u,/(u, ) (u),CO) [S„((u,)/S, (&u,)]'". We can show
that if Q, » (n/y)Q„ the circuit contribution to
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FIG. 2. The result of our calculation of nr, the overall system noise number for the detection of an impulse. It
depends on four dimensionless coefficients: The total electrical noise number, nz, a quantity proportional to the
ratio of mechanical to electrical noise power, n; an electromechanical coupling coefficient, P; and the ratio of
total noise impedance to source impedance, y.

n& becomes small and n&- n» the analogous am-
plifier noise number.

In Fig. 2 we have plotted the results as con-
tours of constant noise number ratio in the P-y
plane, for three values of n. An important result
is that the minimum attainable noise number
ratio is 1. For Q, large enough and a quantum
limited amplifier, "this corresponds to the stan-
dard quantum limit. The results of our detailed
model then agree with the ultimate sensitivity
limits derived by Giffard" for a generalized
linea~ motion detector.

Table I lists bvo examples of the parameters
that would achieve the standard quantum limit.
Case 1 represents a device suitable for a small-
scale test; Case 2 represents a large mass sys-
tem that might be the accelerometer on the end
of a larger gravity-wave antenna. Most of the
critical physical parameters have either been
achieved (Q„V,/D) or approached (Q,) individual-
ly in roughly comparable circumstances.

Quantum-limited SQUID's are not yet available
but progress is rapid and the prospects seem
good. " Using the approximate theory of Tesche
and Clarke" and the measured output noise of the
well coupled SQUID of Cromar and Carelli" we
infer a noise number n&-28 and a noise resis-
tance RII, —= (S„,/S;)'"-1.4XIO ' & at 23 kHz. This
theory also predicts how the noise changes with
frequency: S;(&u) is frequency independent and

S„,(&d) is proportional to ~'. Thus noise resis-
tance R„ is proportional to (d, and noise number
n~ is frequency independent. The noise resistance
assumed in Case 1 of Table I is nearly that of
Cromar and Carelli, corrected for the different
frequency.

Another conclusion of this analysis is that the

TABLE I. Two possible choices of physical param-
eters (and derived quantities) for the resonant bridge
mode, which would achieve the standard quantum
limit" for measurement of a classical impulsive

force. The symbols are defined in the text.

Case 1 Case 2

(di/2II

Qg
fjl

Mechanical oscillator
0.05 kg
1 kHz

2x 109

0.14 K

50 kg
1 kHz

2x 10~

0.14 K

A.

D
(82/2 II

Vo

Co

V2
V o/D

Sv
s,. (~,)
Li
n A

A& (cu&)

Transducer
7x]0 4 m'
1X10 m

0.28 MHz
15 V

6.2X10 "F
2 6x10 H
& lx 107
1.5 & 10 V/m

Amplif ier
1.5X 10 V /Hz
4.6&&10 A /Hz
1.6x 10 H

(ln2)
0.57 0

7x10 m
lx10 m

0.60 MHz
30 V

6.2x 10 F
5.7x 10 H
)]x 10~

3.0X 10 V/m

7.0X 10 V /Hz
4.5X10 'A /Hz
1.6x 10 H

(ln2)
1.2x 10 0

7
n, /nA

Dimensionless parameters
0.001
0.2
0.2
1

0.001
0.2
0.2
1

best SQUID design for this transducer would be
different from what is now thought of as a useful
SQUID, because a much smaller input inductance

1186



VOLUME 47, NUMBER 17 P H YSICAL RK VI K%~ LETTER S 26 OCTOBER 1981

J-l is desirable. The approximate theory" pre-
dicts that (at a fixed frequency) n„ is independent
of I I and R„ is proportional to Li. Case 2 of Ta-
ble I illustrates how we might use this to our ad-
vantage. By an increase in C„a decrease in I-,
and reduction of I-l to get the proper R~, it is
possible to maintain good impedance matching and
good coupling to a much larger mass with only a
modest increase in field.
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