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Simple Derivation of the Baxter-Model Free Energy
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Starting with some observations, due to A. B. Zamolodchikov, a short cut to the determi-
nation of the Baxter (eight-vertex) -model free energy is developed. The method involves
factorizable ~ matrices in 1+1 dimensions, which are briefly reviewed. If the method
generalizes, we may associate with each known & matrix a Baxter-like model with a known
free energy.

PACS numbers: 05.50.+ q

In this paper a novel connection between two
seemingly unrelated problems is explained. The
first problem is the determination of the free en-
ergy of Baxter's eight-vertex model' briefly dis-
cussed below. The second problem is the deter-
mination of the S matrix in 1+1 dimensions which
has Z, symmetry (i.e., obeys charge conserva-
tion modulo 4), is Lorentz invariant, and is elas-
tic and factorizable (i.e., the multiparticle S
matrices are products of two-body S matrices,
one for each two-body encounter). lt was solved
by Zamolodchikov' using certain general prin-
ciples such as unitarity, crossing, etc. , as well
as constraints imposed by the factorizability re-
quirement. ' Zamolodchikov noticed, on solving
for the S matrix, that one of his S-matrix ele-
ments was very simply related to the free energy
determined by Baxter for the eight-vertex model.

!

IIere this coincidence is explained, i.e. , it is
shown that the knowledge of the two-body S matrix
is indeed equivalent to the knowledge of the free
energy and that the two are related in a manner
that Zamolodchikov noticed. The present connec-
tion between an on-skell S matrix and a statisti-
cal problem on a lattice and not necessarily criti-
cal is very different from the usual one between
Euclidean Green's functions of quantum field theo-
ry and the correlation function of a critical sta-
tistical system.

In the eight-vertex problem Baxter considers
an N & N lattice on the bonds of which are drawn
arrows subject to the requirement that only the
four vertices in Fig. 1, with Boltzmann weights
a, b, c, and d, and four more with the same
weights but all arrows reversed, are allowed. He
parametrizes the ratios of weights as follows:

sn2q(1+ i 8/w) —sn2qi8/w 1 2qi8 i8a:6:c;4= : &:ksn sn2q 1+—
sn2g

'
sn2g ',

m m

where sn are Jacobi elliptic functions of modulus
k with periods (for 0 &k &1) 4K and 2iK', where
K and K' are complete elliptic integrals of mod-
ulus k and k'. ' [Actually Baxter used a parame-
ter v= q(l+ 2i8/n) ]He got. the partition function
per site in the limit N-~ in the principal region

! (PH), which corresponds to c&a+b+d, all posi-
tive, or 0 & Im g & & E ', 0 & Im 6 & m, with g and 6
pure imaginary. Using the Fan and Wu identities'
one could get the answer everywhere else. We
come to this answer in a moment.
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bility demands that'

S,:S~: S,:S„=a:b:c:d. (2)

Sa Sd

The S,. are required to be meromorphic; to obey
the crossing relations

FIG. l. The four independent amplitudes in two-body
scattering.

S,(8) = S,(i it —8), S,(8) = S~(i w —8),

S.(i~- 8) =S,(8);
(3)

The Z, -symmetric S matrix in 1+ 1 dimensions
describes collisions between particles (P) and
antiparticles (P) whose charge is conserved mod-
ulo 4, so that PP -PP is allowed. In a two-body
collision there are eight types of charge states,
and eight amplitudes. Four of these are depicted
in Fig. 1, while four others, equal to these and
related by reversal of all arrows, are not. For
example, S, describes a reaction P(8/2)+P(- 8/2)
-P(8/2)+P(- 8/2), where &8/2 are c.m. rapidi-
ties. Note the natural correspondence between
the processes in Fig. 1 and the eight vertices of
Baxter. (S, corresponds to a, etc. ) Factoriza-

to be real analytic (i.e., be real on the Im 8 axis),

S,.(- 8*)= S, + ( 8);

and to satisfy unitarity,

S(8) S (- 8}= I.

(4)

(5a)

Equation (5a) constrains S,(8) [on eliminating
others using Eq. (1)] as follows:

22
S, 8}S. 8)=

sn'2il - sn'(2il i8/w)
' (5b)

This equation has a unique "minimal" solution' if
we require it to be free of poles and zeros in the
"physical strip" 0 &Im6& m. It obtains for 0 &Imp
&K'(k)/2, 0&k &1, and is given by

2' n —y . 2mn0 . 2' iw —8

S,(8) =exp 4P
nsinh, cosh 2m'n y'

(6)

where y=imK'/2qi and y' =2wKi/il. Zamolod-
chikov observed the remarkable coincidence that
the Baxter-model free energy per site f, in the
PR, is related to S by

z =exp[- Pf(a, b, c, d)]= c(8, il, k)

0 t

g b d

S, Sq S„

We now proceed to explain this coincidence by
proving the following equivalent result.

Theorem The partit. ion—function per site,
z(8, il, k), is unity in the PA if S„.. . , S„are used
as vertex weights (Note tha. t S„.. . , S, are spe-
cial cases of a, . . . , d, normalized by unitarity
and constrained by crossing. )

Proof —Consider .the process where a projec-
tile with rapidity 8 and internal state i, (=P or P )
collides with N targets at rest and in an internal
state given by a collective label ny Let i,' and

n, be the final states. Fig. 2(a) is a, space-time
picture of this process. Let us denote by
S,. '& ~ "&(8) the (X+ 1)-body S-matrix elements.
(Hereafter S shall stand for this S matrix. The
two-body S matrix will be referred to by name. )

Q2

l~

QI

(b)

I 5= I2

l2=I l2

Iq

FIG. 2. (a) A space-time picture of a collision be-
tween a particle of rapidity ~ in (internal) state ij with
& particles at rest in state &j. The final states are i j'
and 0'q. (b) The skew-periodic lattice.

!S is just the monodromy matrix of Takhtadzhan
and Faddeev' and is related to Baxter's transfer
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matrix T by

(8)

are then led to the following:

zs(8)za(- 8) = lim As'/~(8)As'/~(- 8)

The Baxter partition function with toroidal bound-
ary condition on an N && N lattice is, in the PR
(to which me restrict ourselves hereafter),

Z =TrT"B

= As" (1+terms vanishing as N -~), (9)

where AB~ is the largest eigenvalue of T in the
PR.

Consider now an N & K lattice periodic in the
vertical direction, but skewed in the horizontal
direction —the right-most state in row n (i „')
equals the left most in row n+1 (i „+,) [see Fig.
2(b)]. Let P=(i„i„.. . , i~) and P'=(i, ', . . . , i~').
The reason behind introducing this skewed parti-
tion function Z, is that

Z =TrS"

=2A, ~(1+terms vanishing as N-~), (10)

where A, is the largest eigenvalue of S. (Even
though S is not diagonalizable in the PR, it is
made up of two identical, positive blocks, each of
the form A, Z 'PZ, where P is a stochastic ma-
trix whose trace -1 as N —~.') Viewing Fig. 2(b)
from the side, we get

Z&=Z[T"] as~
8

=A,'g & P~ Ag & A, ( P ') = A, 'C„,

A (i 8) = A (
-' C )'/ (12)

(in the PR). Note that since ~Aa) is 8independ-
ent, so is C„and that A~(8) = &As~ T(8)~A@ is
meromorphic as the weights are.

Our motivation for deriving Eq. (12) is the fol-
lowing: We shall shortly show that the analytic
continuation of A, (8) from 0 & Im 8 & m to —m & Im 8
&0, along the Im 6 axis, obeys

A, (- 8)A, (8) =1. (13)

(Once established on this line segment, the rela-
tion holds in the entire 8 plane. ) Equation (12)
implies then that

e) S,(e) =(-,'c,) '»,
where AB is defined for all L9 as AB minus those
terms that vanish in the iV = ~ limit in the PR. We

where Ag is the eigenket that goes with A~.
(If

~ As is asymptotically degenerate C„ is suita-
bly modified. ) Equations (10) and (11) tell us that

(~ C ) 2/h' (15)

= A,.(0) exp(- i 8A, ). (17)

In the PR, where 8= i
~

8~, we must have A, & ~,.
in order that A, dominate. By the same token,
as we move down the Ime axis to 8= —i

~ 8~, we
see that A, smoothly evolves into the smallest
eigenvalue. (I have verified that degeneracies do
not invalidate this argument. )

Returning to z~, the relation Z(S„S~,S„S~)
= Z(S~, S„S„S„)and the crossing equations (3)
imply that

za(8) =as(iw 8)- (18)

(Actually, this is valid for z, but z =as in the PR
and 8 im —8 m-ajs the PR into itself. ) Finally,
the fact that under 8- 8+ y'/2 [where y'= 2miK(k)/
q], some weights at the most change sign a.nd T
is invariant tells us that

z (8) =z (8+ y'/2).

Equations (15) and (18) imply that zs(- 8) =1/

[If C„' ~ did not tend to 1 as N-~, Eq. (12)
would imply that the free energy per site with
skewed boundary conditions does not equal that
with toroidal boundary conditions. We exclude
this unphysical possibility. ] Note that za(8) equals
z, the true partition function per site, in the PR,
but not necessarily elsewhere in the 6 plane.

Let us now turn to the proof of Eq. (13). Since
S (- 8) =S '(8), A, '(8) is an eigenvalue of Sr(- 8).
It is also nondegenerate and the smallest in mod-
ulus. Since S and S~ have the same spectrum,
Eq. (I3) boils dou/n to the claim that the analytic
continuation of the largest eigenvalue of S(8) from
Ime & 0 to Ime & 0 gives the smallest eigenvalue of
S there. To explore the crossover, we expand
S(8) near 8=0 and work to order 8:

S( 8) = So+ 8S,.
To first order, we have in obvious notation

A,.(e) =A,.(o)+ e&A,. Is, (A;) .
At 8=0, unitarity of S, says A,. (0) lie on the unit
circle. For 8 real, unitarity of S(8) requires the
first order changes to be perpendicular to A, (0)
in the complex plane so that

A,. (e) =A,.(o)[1—ieA,. ]
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Im8
/(

i7r. . D J ..C

A. ,

/(
B.,X/2 Re g

J

zs(8) = I/zs(im —8) or that

zs(8) =zs(2' + 8). (20)

Thus we need to study z~ just in one period, say
the rectangle ADCBIH in Fig. 3. Since As(8) is
meromorphic, zs(8) can be singular only at a
pole or zero of As(8). Poles of As are traceable
to poles of the two-body S matrix, which are
known to lie only on AH and BI,' and are given by
crosses in Fig. 3. But since As(8) is never zero
on AD it cannot have a pole on AH. As for a zero
of As(8) in ADCBIH, it would imply a pole in
AHGFED which is impossible. (More precisely
z~ cannot vanish on ADCBIH because it cannot
blow up in AHGFED. ) Thus zs is a consta. nt by
Liouville's theorem and equal to 1 because zs(0)'

There exist two other short cuts, all based on
determining z~ from some functional relations.
The one due to Baxter' is essentially the same
(though his face transfer matrices are not nor-
malized by unitarity). His Eqs. (3.28) and (3.29)
coincide with my Eqs. (5b) and (3) on setting u
= —8'/X and & = farl/i K But he h. as to assume his
crucial Eq. (3.31), while I do not. In Stroganov's
approach, ' the inversion formula [his Eq. (13)] is
shown to be valid for 8 near zero (where T is
close to a, shift operator) but assumed to hold for

FIG. 3. A portion of the 0 plane. Poles of the two-
body S matrix occur on AH, BI, EG, etc. and are shown

by crosses. ~CBIH is the fundamental period of zz.
On ~, z~ =z, the true partition function per site.

all 8. (See Ref. 10 for other related works. ) The
above theorem puts these earlier schemes on a
firm footing in the Z4-eight-vertex case. To do
the same for other models, such as the nineteen-
vertex model of Zamoldchikov and Fateev, "one
must verify that the ingredients for a similar
theorem are present.
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