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Subharmonic Sequences in the Faraday Experiment: Departures from Period Doubling
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Subharmonic sequences in the shallow-water surface waves generated in a resonator
with one-dimensional properties are shown to exhibit departures from period doublimg
for long-period subharmonics.

PACS numbers: 47.35.+i, 47.20.+m, 47.25.-i
Recent interest in driven nonlinear systems

has focused on the transition from the preturbu-
lent to the "weakly turbulent" regimes. It is
thought that such transitions in deterministic sys-
tems with limited degrees of freedom might pro-
vide insight into turbulence in fluids. '

While it has generally been accepted' that non-
linearities can lead to higher harmonics (as well
as sum and difference frequencies), it has re-
cently been reemphasized that driven. nonlinear
systems can also generate subharmonics. Feigen-
baum' has shown that a universal period-doubling
sequence arises quite generally in nonlinear one-
dimensional maps, appearing as a precursor to
chaotic behavior. Recent computer experiments
on the driven anharmonic oscillator' and Bossier
attractor' exhibit this universal period-doubling
sequence. The early work of Pedersen' on strong-
ly driven loudspeakers at frequency f clearly
evinces the beginning of a period-doubling se-
quence (f/2, f/4). ' Longer sequences have also
been observed in dc-driven, Rayleigh-Bernard con-
vective instabilities. ' "

Rayleigh" already noted that two classes of
driven systems possess subharmonic response:
driven nonlinear oscillators" (described by a
Duffing equation, where the drive appears as an
external time-varying force) and parametric ex-
citation" (described by a Mathieu equation, where
the drive appears as a time variation of one of
the parameters). The first observation, 150
years ago, of subharmonic parametric excitation
is due to Faraday. '~ He studied shallow-water
waves when the containing vessel was driven ver-
tically, and observed an f/2 response. Rayleigh"
analyzed and experimentally confirmed these re-
sults.

An alternate route to turbulence" is followed in
some Rayleigh-Bernard"" and couette-flow" ex-
periments with the appearance of incommensu-

rate freqencies. The convective instabilities in-
herently invove more than one degree of freedom,
which could account for the presence of these
frequencies. In order to isolate the effects of
period multiplication, it is important to inhibit
this other mechanism. Our version of the Fara-
day experiment therefore utilizes a resonator
with response along only one of its three dimen-
sions. We find a rich spectrum of subharmonic
instabilities, which, however, does not generally
follow universal period-doubling sequences for
long-period subharmonics. "

Our resonator is a narrow Plexiglas annulus
(Fig. 1) which is, to good approximation, a one-
dimensional wave guide closing on itself. The
anharmonicity of the modes caused by the curva-
ture is negligible. The annulus has the advantage
of allowing arbitrary spatial phase for the vari-
ous harmonics. However, this makes determina-

FIG. 1. Sketch of the annular plexiglas resonator,
a, sitting on top of a loudspeaker, b. The resonator
can be used with or without the rigid reflector, c. The
wave height of the salt water in the annulus is deter-
mined by measuring the conductance between the copper
blocks, d. Annulus average radius is 4.8 cm and the
cross section is 0.8x 2.5 cm.
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FIG. 4. (a) Height vs time of the f/32 quasiperiodic
(weakly turbulent) state when the drive amplitude was
increased 28% over that used in Fig. 3. (b) Power
spectrum of (a). The 0-dB level coincides in Figs. 3
and 4.

It is interesting to compare the response in fre-
Iluency and time of the periodic (preturbulent) and
near-periodic (weakly turbulent) states. Figure
3(a) is a wave height versus time plot in the peri-
odic state. The amplitude builds up and sudden-
ly dies in a characteristic "cockscomb" pattern
in which even minute details repeat. The state is
robust; we have seen it persist for hours, and it
is stable to small drive-amplitude changes. The
periodicity is reflected in the power spectrum
[Fig. 3(b)] by the absence of a visible noise Qoor.
The spectrum also shows that this is an ~ = 16
subharmonic, consistent with the fact that there
are eight cycles of f/2 per cockscomb. If we
raise the drive amplitude by 28/~ we see an ex-
ample of the near-periodic state (Fig. 4). Cocks-
combs still tend to form but end randomly, and
the spectrum shows broadband noise along with
periodicity at I = 32. In the list of observed ~
values, 2 and 4 were always observed in the peri-
odic state, but the remaining ~-value observa-
tions were about equally divided between the peri-
odic and quasiperiodic states.

Earlier we noted two exceptions to the even-~
series. We have seen a pf/3 and a pf/35 series
in the near-periodic modes. They are the only
odd series we have observed although it must be

said that no concerted effort in this direction was
made. The latter series is unmistakably pf/35
rather than pf/34 or pf/36 since unlike all other
spectra, f /2 is not only not dominant, it is in the
noise and unobservable. It is instinctive to reject
odd-~ modes as a possibility. However, this
must not be dismissed given the observed depar-
ture from period doubling. Sum and difference
frequencies are the hallmark of nonlinear proc-
esses, and the improbable presence of simultane-
ous excitation of two of these sequences can give
such odd modes. For example, f/10 -f/14= f/
35.

We hope in the near future to use superfluid he-
lium as the fluid in this experiment.
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