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Diffusivity of the Hard-Sphere Model in the Region of Fluid Metastability
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New data are analyzed for the hard-sphere fluid at densities po = 0.95-1.08 in the
metastable range. In this region the diffusion coeffiecient behaves as in laboratory
fluids, following a Doolittle equation with normal parameters rather than a Batchinski-
Hildebrand equation. The diffusing, internally equilibrated, metastable fluid can be
arrested at different densities by sudden quenching to obtain the glassy state A. new
high-density limit for random close packing, 3% greater than that of Bernal packing, is
identified.

PACS numbers: 47.20.+m

Data obtained by Alder, Gass, and Wainwright,
in part of their classical studies of the hard-
sphere system in its stable fluid range, ' have
been used to show' that the diffusivity D is a
linear function of the system volume, implying
that

D =A( V/ Vo
"—1),

which is the same relation found for liquid metals
and simple molecular fluids by Batchinski' and
Hildebrand (hence V, "). On the other hand
Doolittle' showed that for viscous molecular liq-
uids, in which D is much smaller than for liquid
metals, fluidity y (=viscosity '), and hence dif-
fusivity, go like

y~D=A'exp[ —B/(V- Vc )]. (2)

It can be argued' that departures from behavior
described by Eq (1) oc.cur because of a "cog-
wheel" effect which would not apply to atomic
systems. On the other hand it can also be argued'
that "backscattering" effects neglected in the
Enskog theory would lead to behavior described
by Eq. (2) for atomic fluids also. There exists
therefore some interest in testing the behavior
of a suitable model atomic system in the low-
diffusivity regime to establish the appropriate
phenomenology for atomic liquids at high packing
densities. '

Because it seems that the hard-sphere system
may be more crystallization resistant than other
metastable atomic systems, ' we have extended
Alder, Gass, and Wainwright's study to densities
14% above the value po'=0. 95, V=1.50Vf„(Vq„
is the close-packed volume) of the phase transi-
tion between equilibrium fluid and solid where
the earlier study stopped. The algorithm is

essentially that of Alder and Wainwright, and
contains a compression rate parameter which
can be set equal to 0 for study of (metastable)
equilibrium properties. Equilibration occurs
rapidly near the solid-liquid-tr ansition density,
but increasingly slowly as the density is increased.
Runs of up to 10' collisions (approximately 200
psec of real time for a collision time of 10 "
sec) were made, to ensure that the equilibrium
value of the diffusivity was measured in each
case. Equilibration was judged from constancy
of the pressure, calculated both from the virial
theorem and from the collision rate itself, and
from the linearity of the plot of mean-square
displacement f' vs time f (D=l'/6f).

Values of the diffusivity were obtained at fifteen
different densities, ranging from that of the
liquid-solid transition (po' = 0.943) up to po'
=1.08. At the latter density crystallization oc-
curred after 0.25 &10' collisions, as a quite sud-
den event reflected by an increase in fa vs t plot
slope and a decrease in the pressure. Any at-
tempt to reequilibrate, starting with uncrystal-
lized configuration, but running at higher densi-
ties, resulted in immediate crystallization. De-
tails are given in a separate publication. '

Results are presented in Fig. 1 with a reduced
volume scale, since the earlier data, given as
an inset in Fig. 1, showed that D is linear in
volume rather than in density. The range of dif-
fusivity covered in this work is indicated by the
shaded area in the inset in Fig. 1. The linear
extrapolation of the high-diffusivity data to low
diffusivities is shown by the dashed line in Fig. 1.
It is clear that the simple linear volume depen-
dence of D breaks down for hard spheres in the
low-diffusivity regime.
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FIG. 1. Variation of hard-sphere diffusivity with
volume reduced by the close-packed volume. Dashed
lines show predictions of Eq. (1), and also of the
Arrhenius equation with use of parameters which fit
the high-diffusivity data shown in the inset. Error
bars are standard deviations of best fit for plots of
l ~ vs t in the long-time region. The last point is espe-
cially uncertain. Inset: Data in stable fluid region
from Ref. 1. Shaded area shows D and V/Vf, range
covered in the present study.

To answer the question of how closely the hard-
sphere behavior is fol, lowing that typical of mo-
lecular liquids studied in the laboratory it is
necessary to provide some basis for comparison,
i.e., some corresponding-states criterion. This
is a problem because critical constants cannot
be used, and melting constants are erratic func-
tions of the crystal type. However, the charac-
teristic linear volume dependence found for the
diffusivities at high values (inset in Fig. 1) sug-
gests a reasonable choice for comparisons of
isothermal behavior, viz. , the volume ~, in
Eq. (1).

Using this as a reference volume, the diffusivi-
ties of the hard-sphere fluid and laboratory
fluids may be compared if the hard-sphere dif-
fusivities D* are converted from the dimension-
less units natural to the machine calculations to
the normal units square centimeters per second.
The conversion formula is

D =u*o(u T/m)" = 8.158 x10-'T "D*,
l130

FIG. 2. Comparsion of the present hard-sphere
diffusivities, in argon units, with LJ and laboratory
data for methyl cyclohexane (MCH) (data of Ref. 10II,

using reduced volume units. Inset: Ref. 1 data in
argon units and method of defining the reference vol-
ume Vo

and requires that mass m and size a parameters
be assigned to the hard-sphere data. Natural
choices are the mass and diameter of the argon
atom. Choosing a temperature of 90 K to corre-
spond with the temperature at which the iso-
thermal diffusivity of Lennard-Jones (LJ) argon
has been studied, ' we obtain the linear plot of D
versus volume relative to the volume at close
packing shown in the inset in Fig. 2. This extra-
polates to D=0 at V, =1.38, which then serves
as our reference volume for the hard-sphere
fluid. The low-temperature data of the present
study are shown on an expanded scale as a func-
tion of the reduced volume scale V/V, , in Fig.
2.

For comparison with laboratory liquid data, we
chose the eases of "LJ argon, " also studied by
simulation, ' and methyl cyelohexane, a simple
hydrocarbon which remains fluid to very low tem-
peratures, and whose diffusion behavior as a
function of volume has been accurately deter-
mined by Jonas, Hasha, and Huang using spin-
echo measurements up to 1-kbar pressure. "
Reference volumes for "I.J argon" and methyl
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FIG. 3. Test of Eq. (2) for two choices of Vp, Vf'~&

is the ordered close-packed volume and VK is the vol-
ume at which the extrapolated fluid entropy intersects
the ordered solid value. This is the same volume as
the so-called Bernal volume, which, however, is
found in this study to be 3% greater than the limiting
low value for ' random" packing.

cyclohexane (studied at two temperatures) have
been obtained in the manner described above,
and the diffusivities for these liquids then plotted
on the same reduced scale in Fig. 2.

It is seen immediately that the form of depar-
ture from the Batchinski-Hildebrand linear law
is very similar for all three fluids, the differ-
ences appearing to be within the computational
noise limits except at the lowest V. Consequent-
ly, we can enquire whether the deviations from
the BH linear law may be accounted for by the
Doolittle form of the volume dependence [Eq. (2)j.
Figure 3 shows the hard-sphere diffusion data
plotted in the Doolittle form with two choices of
V, . The choice V, = V&„[Fig. 3(a)] suggested
by an Eq. (2) analysis of the data available pre-
viously" fails to linearize the data, but a second
choice, which we have designated VK, numerical-

ly 1.16Vq„, does linearize the data within their
uncertainty. The symbol VK is chosen because
this is the volume at which extrapolations of the
best hard-sphere fluid equation of state" indi-
cate that the fluid entropy would become the
same as that of the ordered solid (the entropy
problem to which attention was first drawn by
Kauzmann"). That the diffusion coefficient is
tending to zero at the same condition as the ex-
cess entropy tends to vanish implies that the
hard-sphere model behaves in a manner charac-
teristic of a wide range of experimental systems
studied as a function of temperature. ' Further-
more, the slope of the plot in Fig. 3(a) corre-
sponds to a volume 0.68VK which is comparable
with the empirical relation between B and +p
of Eq. (2).'

Some theoretical justification for the Doolittle
form has been given by the treatments of Cohen
and Turnbull' and, latterly, Cohen and Grest. "
The success of the Doolittle equation for hard
spheres evidenced herein should not, however,
be construed immediately as a vindication of the
underlying models; these are based on the idea
that there exists "free volume" in the structure
which redistributes in such a way as to permit
a fraction of particle-size displacements which
are designated "diffusive. " With use of accurate
hard-sphere equation-of-state data and the Widom
expression" for the excess chemical potential

6 p, =@Tin(V„/V)

(where V„ is the cavity volume Pn, v, , the v,
being volumes in the structure large enough to
accept a whole hard sphere), it would appear that
the probability of finding a, particle-size hole in
a 512-particle sample around the freezing den-
sity, "during the period in which diffusion is sub-
stantial (several atomic diameters), is quite
negligible. On this basis it would seem that the
theories arrive at the right diffusion expression
from a model which oversimplifies the actual
tr ansport mechanism.

At this point we make two additional observa-
tions of considerable interest and some irony.
The first is that the value of VK corresponds
closely with the Bernal volume which is generally
believed to be the limiting high density for amor-
phous packing of hard spheres. The second is
that the Bernal volume is not the limiting high
density for hard-sphere amorphous packing,
shown as follows: If the equilibrated fluid con-
figuration at pv' =1.08 is suddenly compressed,
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thereby avoiding crystallization, the density in-
creases along a glassy-state path with the same
slope as for the ordered solid, ' and tends to a
limiting high density which is nearly 3 k greater
than that of Bernal packing. Because any attempt
to further condense the structure in the fluid
regime leads to immediate crystallization, it
seems that this new density, corresponding to
V= 1.133Vf„, must be a final limit for amor-
phous-phase packing of hard spheres. Use of
this volume as V, in the Doolittle equation gives
as good a fit to the Doolittle equation as that
using VK (1.163V„,), and yields a slope of 1.02V,
which accords with Doolittle's original finding. '

A final question of interest concerns the rela-
tion of this latter random packing to ordered
packing and possible connections with the proba-
bility of passing from one state to the other. The
radial distribution functions of the prequenched
fluid structures, which at densities less than
1.08 uere time independe-nt and stable against
nucleation for very long periods, showed increas-
ingly the presence of near-neighbor distances
characteristic of crystal packing as pressure in-
creased. ' In addition, an increasingly severe dis-
tortion of the "split second peak, " commonly
associated with amorphous packing, occurred in
favor of the inner peak. The fluid thus seems to
be preparing itself for eventual nucleation, the
probability of which must be a very sharp func-
tion of volume, approaching unity for short times
at -p=1.09. A critical nucleus (which once
formed grows very rapidly) contains only some
15-50 atoms"'" however, so that it is of doubt-
ful value to think of the fluid at less than the
critical nucleation density as containing micro-

crystallites.
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