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A comprehensive shell model for light hypernuclei has been developed and applied to
Rc. Absolutely normalized distorted-wave calculations yield angular distributions in ex—
cellent agreement with experiment, allowing spin assignments to be made. Coherences
arising from the distinguishability of the A are predicted theoretically and observed in
the data. The overall comparison with experiment places constraints on residual inter-

action matrix elements.

PACS numbers: 21.80.+a, 25.80.+f

The preceding Letter' reports on spectra meas-
ured for several p-shell hypernuclei produced via
the (K,7") reaction at 800 MeV/c. In particular
the rich spectrum generated for ¥C provides a
fertile ground for a sophisticated shell model
treatment of hypernuclei. We have developed a
formalism appropriate to (p,)"pa configurations
so as to naturally account for the (0p,™,0p,) ex-
citations which appear to dominate the hypernu-
clear spectra obtained in Ref. 1. Augmenting this
scheme by calculations of the (py)"s, configura-
tion,? we are able to present a comprehensive pic-
ture of hypernuclear structure in this mass re-
gion. This formalism allows us to deal with the
occasional, very revealing, departures from a
simple weak-coupling picture. In particular, the
excitation-strength ratio for the lowest two 3~
substitutional states in $3C differs strongly from |
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a simple pickup value. Further, our approach
permits us to extract constraints on the A spin-
orbit forces from the energy shift with angle for
a peak expected to arise from the *C(g.s.) ® (p, s,
Pa/o)a configurations. Coupled to our structure
treatment is the use of a distorted-wave Born-ap-
proximation® reaction mechanism, incorporating
a fit to preliminary elastic-scattering data,*
which should yield an accurate determination of
absolute cross sections.

The process being considered,

K +4Z@)~1" +42(f), (1)
is best treated in the laboratory system where it
is reasonable to assume that the K -nucleus
many-body amplitude is given by a sum over ele-

mentary two-body interactions. The differential
cross section for (1) may be written

(2a)

(2b)

dJ is the c.m.-laboratory Jacobian, IIE anda HEL are products of the energies for the four bodies in-
volved in Eq. (1) in the center-of-mass and laboratory systems, respectively, and E o =E x +E 4 z
(c.m.). V;=165 MeV fm® is a volume integral determined from the elementary two-body 0° laboratory
cross section, taken® as 4.5 mb/sr but reduced to 3.2 mb/sr by an appropriate Fermi averaging in the
nucleus. Potentials which fit available elastic data® on 2C are U(r) = (- 24.4 — i41.4)f(r,0.375,1.075)
MeV, and U,(r) =(- 0.9 —i50.9)(+,0.44,0.926) MeV with f(+,a,7,) the usual Woods-Saxon form for diffu-
sivity a (fm) and radius R =v, A*® (fm). Small (+?) for Uy , reflect expected short ranges for 7- and K -

nucleon forces.

A final ingredient in the reaction calculation is the choice of A and neutron bound-state wave func-
tions. The Woods-Saxon potentials for the bound states in masses 12 and 13 were chosen consistent
with electron-scattering charge distributions and with single-particle energies for both neutrons and
protons. The A-binding energies are somewhat arbitrary; in both masses 12 and 13 we took B, (p,s,
p1/2) =(0.6,0.1) MeV implying a small spin-orbit separation® e€,=¢,,,,(A) = €,,,,(A) =0.5 MeV. The geom-
etry for A and nucleon potentials was identical, »,=1.15 fm, a =0.63 fm.

The effective neutron number | 7'; flz in Eq. (2) contains a coherent superposition over neutron and A
orbits j,,jy. Neglecting detailed dependences on jy, ja this quantity becomes proportional to

50k0| 1,00 I, T4l (@, T@, ) 2275 250N o, T 702 (0). (3)
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All structure information is contained in the tran-
sition density, calculable after consistent treat-
ment of “Z and 4Z. For 0py-0p, transitions, the
independent magnitudes M@, which falls away
rapidly from 6, =0°, and M®, which peaks near
15° in this situation (see Fig. 2), excite different
final 3C states, $~ fork=0and §°, §” fork=2
corresponding to AJ =AL =k, In the pure weak-
coupling limit, the entire cross section associated
with a single core state {c} is simply related to
the neutron pickup strength,

1T 3412 =23 (2% +1){1,0£0(2,0)21® (6)25C3S,(c). (4)
R i

A poor-resolution (K ~,7”) experiment would see
just this strength.

The structure calculations employ two versions
for the p-shell effective interaction, one due to
Cohen and Kurath? (POT) and one due to Millener
(MP4), and in principle a completely general AN
force. In practice we used central and two-body
spin-orbit components (symmetric and antisym-
metric):

Vay() ==V )1 —€ +eP)(1 +Qdy-G,)
+Ut(/r)(5Ai6N) 'TNA' (5)

The relevant Slater integrals of the central inter-
action are F© and F®, We take® F@=-1,16 MeV,
=-0.1, € =0 and calculate the ¥C spectrum as

a function of €, and F®. Since the lowest states

of the *2C core have dominantly S =0, forces in-
volving GN play only a minor role in the structure
of 3C. Sufficient core states are employed in our
(p4)"pa weak-coupling basis to guarantee conver-
gence and this accounts for all pickup strength
and all states of high spatial symmetry. Note
that if we treat the hyperon as a distinguishable
nucleon in a harmonic-oscillator basis then all
s%"p, configurations have an overlap of A~ /2
with spurious states. Since this overlap is small
and uniform we consider s*"p, configurations
only.

Several interesting points emerge from the cal-
culations. The comparison of absolutely normal-
ized angular distributions with data in Fig. 1 in-
dicates the striking success of the overall ap-
proach. Figure 2 presents the essence of the
structure results, with detailed information avail-
able only from analysis of the “10”- and “16”-
MeV groups (Ref. 1). Figure 3(a) displays ener-
gy splittings between different states as a func-
tion of F®, At small angles the cross-section
ratio » =0(($7),)/0((37),), like AE((37), - (7)),
is strongly dependent on F®; for MP4 (POT), p
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FIG. 1. Comparison of calculated angular distribu-
tions with experimental data (Ref. 1); the data points
and curves represent cross sections summed over the
same region of excitation energy. The demarcation
between the 16- and 25-MeV peaks is changed from 20
to 18 MeV for angles greater than 10° in accordance
with the data. The cross-section shapes for py—pa
AL =0 or 2 and py~sp AL =1 [AL =& in Egs. (3) and
(4)] are shown in the breakdown of the cross section
for the 16-MeV peak. For the 25-MeV peak the in-
cremental contributions from py— pa OL =0+2), py
—(sd)p (AL =1+3), and sy —~sp (AL =0) transitions are
given. In the AL =0 contribution to the 10-MeV peak
there is destructive interference between the jy=jr=%
and jy=jpr=3 amplitudes. The cross section is thus
small and sensitive to the model chosen for the core
wave functions; cross sections are given for two inter-
actions (see text) which fit the available data on p-shell
nuclei well. An additional error of + 20% in overall
normalization assigned in Ref. 1 is not shown, and
theoretical uncertainties are of this order.
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a good spatial symmetry [54], containing 0.88 of
this latter configuration of amplitude and only
- 0.15 for the substituted *C(g.s.). Since this
symmetry cannot be reached from 2C[441] with
AL =0 one understands the strong departure of p
from the Cohen-Kurath” pickup value p~1.8. For
€>0 (weaker odd-state forces), too large a value
of € would increase p unacceptably above the ex-
perimental value of 5 to 6, hence our choice € ®0,
A second point is that the lowest £~ and §~
states, mainly '*C(g.s.) ® (p,,2,P3,2)a, Would be de-
generate (Fig. 2) in the absence of 0,-core inter-
action. Thus independent of F® | the small shift
[Fig. 3(b)] in the “10”-MeV peak between 0° and
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FIG. 3. Energy separations of selected pairs or
groups of levels (a) as a function of F% for € =05
MeV, (b) as a function of €,. The strength of the pure
two-body spin-orbit force is chosen to give a splitting
€, when pp interacts with a closed p shell. The cross-
hatched areas correspond to the experimentally de-
termined separations (Ref. 1).

15° constrains the combination of one- and two-
body spin-orbit forces to be small. Indeed, with
€,=0.5 MeV andv.,.=v_=0, Fig. 3 demonstrates
that all measured separations can be accounted
for with — 3.4 MeV<F® < _3,0 MeV. Specifically
the (1.7+0.4)-MeV shift [Fig. 3(a)] observed in
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the “16”-MeV group in going from 0° to 15°, not
particularly small relative to AE(*2C;0" - 27)
=4.43 MeV though generated by the “weak” AN
interaction, is interpreted in our calculation (Fig.
2) as due to the dominance of a §~ state at 15°.
The separation of the “16”- and “25”-MeV peaks
at 0° decreases as the magnitude of #® increases
[Fig. 3(a)]; indeed, in the strong-coupling limit,
Van™Vyy (implying | Fi%| ~| F§y| =10 MeV), all
of the 0° strength appears, as the p-shell part of
the strangeness analog state, in a single peak.

The main sensitivities in absolute cross sections
due to reaction and bound-state parameters arise
from uncertainties in Fermi averaging, in optical
potentials obtained from preliminary examination
of elastic data, and finally from uncertainties in
A binding energies. Calculations throughout the
p shell have been made and will be discussed in
an ensuing paper. We note here, though, that
the 0° cross section by Dover et al.® for }2C as
3.4 mb/sr for a pure p,,, state bound at 1.0 MeV
has been reduced to 2.0 mb/sr in much better
agreement with experiment.'®

A full exploitation of the structure information
available from hypernuclei will require improve-
ment in energy resolution, some of which is at-
tainable from coincident 7~y experiments, al-
ready underway. In particular the pair of (0p),-
(0s), E1 transitions (AE,~10 MeV) should in
principle determine €,. At 6,~0°the p,,,-S,,,
transition is dominant and isotropic, while at
6.~ 15° the p,/,-S,,, correlation has the form®*
1-0.6cos?. Finally, the spectroscopy described
here is applicable to Z, =, and AA hypernuclei,

when and if these are observed in some detail.
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