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form way, starting from an arbitrary classical
Lie group, analytically solvable lattice models,
among which is a far-reaching generalization of
the XX' model, given by a quantum Hamiltonian
H~, ". The proposed S-matrix method will be
instrumental in finding energy levels, and in the
computation of correlation functions for the known
and new lattice models of Toda and XXX type con-
sidered here.
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A new integral equation which linearizes the Korteweg-de Vries and Painleve II equa-
tions, and is related to the potentials of the Schrodinger eigenvalue problem, is present-
ed. This equation allows one to capture a far larger class of solutions than the Gel'fand-
Levitan equation, which may be recovered as a special case'. As an application this
equation, with the aid of the classical theory of singular integral equations, yields a
three-parameter family of solutions to the self-similar reduction of Korteweg -de Vries
which is related to Painleve II.

PACS numbers: 02.30.+g

Since the work of Gardner eta/. in 1967, there has been wide interest in the analysis of nonlinear
evolution equations solvable by the so-called inverse-scattering transform (IST). The prototype exam-
ple is the Korteweg-de Vries (KdV) equation

Qg+ 6QQ~+ 'Q~~~ = 0.

In this note we shall present a new linear integral equation which, in principle, allows one to capture a
far larger class of solutions than does the Gel'fand-Levitan equation. Specifically we claim that if
p(k; x, t) solves

y(k; x, t)+ i exp[i(kx+kst)] ' ' dA(l ) =exp[i(kx+k't)],q l;x, t

where dh(k) and L are an appropriate measure and contour, respectively, then

solves the KdV equation. The well-documented physical significance of the KdV equation, of its self-
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similar analogue, and of the associated Schrodinger scattering problem require us to attempt to char-
acterize the form of the most general solution/potential possible.

We now enumerate the basic results given in this note. (i) We give a direct proof that (2) and (3) solve
(1); (ii) we show how the well known Gel'fand-Levitan equation can be obtained from (2) as a special
case; and (iii) we characterize by a matrix Fredholm equation a three-parameter family of solutions to
the similarity ordinary differential equation of (1) which is directly related to the classical second equa-
tion of Painlevt~ (P II). We end with some remarks regarding the role of Backlund transformations and
relevant generalizations.

We now consider (i). The point of view we take here is, in spirit, similar to that of Zakharov and
Shabat. ' Specifically, by direct calculation we show that solutions of (2) substituted in (3) satisfy (1).
We make two assumptions: (a) dX and L are such that differentiation by x, t may be interchanged with

f~; (b) the homogeneous integral equation has only the zero solution. Defining L = Lo+ 3u&„, where L,
= 8,+ 8, ', after some manipulation we find

Lq(k; x, t ) + i exp [i (kx+ k't )] ' ' dA(l ) = 3k [k y„+ i p„„+iud].Ly(l; x, t)
L

(4)

Similar calculations show that the quantity in brackets in the right-hand side of (4) satisfies the homo-
geneous integral equation. Hence SIp=ky„+ i y„+iud=0 which implies Lp=O, whereupon 8„f~(Lp)dh.
=0 is (1). Moreover the equation My=0 is directly related to the Schrodinger eigenvalue problem. If
we define

p(k x, t) = g(k x t)exp[i(kx+k't)/2],

then My = 0 gives

g„, + (&k)'g+up= 0.

Next we pass on to (ii). The classical theory of inverse scattering and appropriately decaying solutions
of KdV may be most easily obtained as follows. Let the measure dX(k) =r, ( k2)dk/2w, where r, (k) is the
usual reflection coefficient of u(x, 0) and the contour I goes over all the poles of r, (k). [Here we have
assumed, for convenience, that u(x, 0) -0 rapidly as

~ x~ - ~.] Then substituting the expression for p
into (2), defining

K(x, y, t) = (2)f~-g(k; x, t) exp[i(ky+k't)/2]dA(k),

and using

exp[ i (k + I )x /2] (/l + k) = —i (J„exp[i (k + I )g/2] /2d g]

(k, I satisfy Imk, lml & 0), we obtain

K(x, y; t )+ E(x+ y; t ) + f„K(x, $; t)E($+ y; t )dg = 0,

where

E(x, t) =(—,') J~exp[i(kx/2+k't)]dX(k),

and u(x, t) =2&,K(x, x; t). Hence by choosing the
above measure dA. and contour L, the Gel'fand-
Levitan equation (6) may now be completely by-
passed.

Soliton solutions of (1) may be calculated in a
particularly easy manner from (2). Locations of
the poles on the imaginary k axis in r(k, 0) corre-
spond to soliton amplitudes, and the residues of
r(k, 0) at these locations play the role of the nor-
malization coefficients. Pure solitons may also
be obtained by taking the measure as

dA(k), = fc&5(k —i a&)dk
/=1

K,(U) = U ' + 6UU' —(2U+ x U') = 0.

We note that (7) is directly related to P II:

P,(V)= V"-xV-2V'=a.

(7)

(8)

Specifically we note that the transformations U
= —V' —V', V=(U'+o.')/(2U-x) relate (8) to the

(L passes through the k =i az). Then (2) reduces
to a linear algebraic system from which the well
known A'-soliton solution is immediately obtained.

We now discuss (iii). The KdV equation admits
the similarity transformation u(x, t ) = U(x')/(3t)'~',
where x'=x/(3t)'~'. The equation for U is given
by (dropping the primes)
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y(t)+ . dv=f(t), t on I,, (9)

where b(t) =f(t) =exp[i(tx+ t'/3)] and J~
=g,'=, p, f, . (see»g. 1), P, =P2 pl p3 P4 pR

p, = p, . (Hereafter j always stands for j=1, . . . ,
5). The solution to (7) is then obtained from

$ 9
U=——q(~)d~rex~

equation

X,(U) = U"+ 2U' —xU+[~+ U'-(U')']/(2U-x) =0

with v= n(o. + 1). However, by direct calculation
[(2U-x)Z, (U)]'=(2U- x)K,(U), hence K,(U) is an
integral of (7), and thus there is a direct trans-
formation between (7) and (8).' One may make
use of these transformations fo find all the known

{see, for example, Lukashevich' and Erugin')
elementary solutions of P II. Ablowitz and Segur'
had established a connection between P II and IST
and had characterized a', one-parameter family of
solutions via the Gel'fand-Levitan equation. Re-
cently Flaschka and Newell' considered P II via
monodromy theory. In the latter work the authors
derived a formal system of linear singula, r inte-
gral equations for the general solution of P II.
However, the highly nontrivial question of exis-
tence of solutions was left open.

An application of the result presented above in
(i) is that a three-parameter family of solutions
of (7) may be obtained from the linear singular
integral equation

self -similar reduction. Moreover the contours

L& are obtained by finding the solution to the lin-
ear problem (U=w„) w —(w+xw') =0 in terms of
integral representations and then deforming these
contours so that they all pass through the origin.
For example, note that L, + L, may be deformed
to the usual Airy-function contour. If we restrict
ourselves to this Airy contour, the result in Ref.
5 is obtained in the same manner as that in (ii)
above.

We shall proceed to demonstrate that (9) may be
reduced to a system of Riemann-Hilbert problems
which are solvable using Fredholm theory. For
this we need the full power of the classical theory
of singular integral equations. ' '

Consider the sectionally holomorphic function

4(z) = f +~ de. (10)

The lines of discontinuity of 4(z) are L&, thus
using the Plemelj formulas, we have

C+(t)=C (t)= . dv, t on —L&,
1 p(v)

2wi ~ 7-t
(11)

1 y7'4'(t)=+ 2 P,. y(t)+ . dr, t on L&,

where 4'(t) for t on L, has the standard defini-
tions' ' of limits of C{z) as z -t from the "left-
hand side" (+) and "right-hand side" (-) of L, ,
and where principal-value integrals are implied
when needed. With use of (11), and Eq. (9) for t
on L,. and -t on -L, , we obtain a system which
we choose to write in the form

(y depends parametrically on x). We note that
both (9) and U are obtained from (2) and (3) by a 4'(t) =G(t)C (t)+E(t), t on I.. . (12)

-L5

L4

FIG. 1. Contours associated with Eqs. (9) and {12).

where L, = L, +(-L,), 4"(t) = [. I"(t), 4' (-t) ]
4 (t) = I '(-t), E(t) = [f(t)H(t), -f (-t)H(-t) ]
H(t) =$p,. if t on L, , 0 if t on L, ) and th-e compo-
nents of the 2 x2 matrix G(t) are G»(t) = -2b(t)
xH(t) = —G {-t), G, =G, =1.

One can prove the following statements.
(a) 4'(-t), 4 (-t) are "minus" and "plus" func-

tions, respectively. (b) Necessary conditions for
solvability of (12) are the symmetry conditions
G(t) =[G(-t)] ', E(t)+G(t)E{ t) =0, which ar-e

satisfied by the above G, E. (c) Thus (12) defines
a system of discontinuous Riemann-Hilbert prob-
lems with the additional restriction that 4 (t)
= C' (-t). However this condition can be relaxed
since one can show that (12) always admits a
solution with this restriction, and moreover, in
our case the solution is unique.

In order to solve (12) we first consider the
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homogeneous problem. The standard procedure
is to transform the discontinuous homogeneous
problem to a continuous one, and then obtain the
fundamental set of solutions.

Associated with a given contour I „define the
following auxilliary functions

~„'(t) =
(, ), ~,„(t)=(, )

(13)
4=1jk

jk

where z ~ is some j -dependent fixed point off I;.
The branches of the above functions are chosen

e'(t)=g(t)+ (t), ton f, ,

where we have used the transformation 4) '(t)
=A&'(t)@'(t), 4 (t) =&0 (t)+ (f) and hence g(t)
= [0'(t)] '& 'G(t)&Q (t), with A, 0'(t) defined
by

(14)

such that co,k and co,.k are plus and minus func-
tions, respectively (e.g. , the branch cut for cu, , '
is taken between 0, -z, and hence lies to the
right of L,). The properties ~,,(0+) =exp[-ink, ,],
~,.„(0-)=exp[i7[A. ,„], &u, „'(f)=~,„( t)-allow us
to map the homogeneous system C '(t) = G(t)4 (t)
which has a discontinuity at f =0 to the following
Riemann-Hilbert system which is continuous at
the origin:

1 —A,2 . 1 —A, ,'* exp[~'wz, ,/2[ " exp[~we„/2) (~,„'
2p~ 2p~ Q.

9

exp [ink, ,/2] exp[i7[x,,/2 J

where for j=2, 3, 4 we have n=l, /=2 and for j =1, 5 we have o. =2, p=l; the A, , and A, , are defined
by

exp[i7[A, ,] = p, +(1+p, ')'i', exp[zwA, ,] =-p, +(1+p, ')'i', A, , = exp[2ivA»], A» =e px[2i why, ]

The matrix g(t) has the properties g(t) = [g(-t)] ' and detg = —1.
One may characterize a solution of the system (14) by imposing the condition +(z) - (I/~ =y as jr i

-~
in A . This leads to a, Fredholm equation for, say, 4' (f), which however must be interpreted in a
suitable principal-value sense as it does not converge in the normal sense at infinity. Alternatively,
one may obtain a regular Fredholm equation of the second kind by imposing conditions at a finite point
off all contours, say z = 1. This leads to the following Fredholm equation for +'(t):

+'(t)+
2 f —

1 [g, (t)g(-7) —I]+'(7)«=g, (t)13, f on I, ,
1 1 1

where 8=4'(1), f =p, =,'( J, + f ), and I is
the unit matrix. Any two linearly independent P
vectors, say P», lead to a fundamental matrix
~ (t) =[(I/, (t), 4"(t)] for the system (14).

With use of the above results the fundamental
matrix of the discontinuous problem (12) is given
by

x'(t) =an'(t)[@, '(t), +, '(t)] .
Hence the solution of (12) is given by

F(&) 1, f [X '(v)] 'E(7)
2 2'I[i i T —t

Having obtained 4 '(t) and using (11) to obtain
y(t), we have characterized a three-parameter
family of solutions of U. With use of the results
of Fredholm's theory the nonmovable critical-

point property of U is easily verified.
Finally, we make some remarks. First, we

only expect from (2) to obtain solutions to P II in
the range ——,

'
& n & —,'. To obtain the solution for

all ranges of n, we believe, the Backlund trans-
formations (following Rosales") and "finite per-
turbations" (see, for example, Ablowitz and
Cornille") of suitable elementary solutions must
be employed. Similarly, wider classes of solu-
tions to KdV should be obtainable this way (we
shall remark on this more completely in the fu-
ture) . Second, straightforward generalizations
to the higher-order KdV equations, as well as to
many other nonlinear evolution equations, are
possible. Third, motivation for some of the ideas
in this note originate from the concept of sum-
ming perturbation series. Relevant perturbation
series can be readily developed (see, for exam-
ple, Refs. 11 and 12).
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