with natural modes of oscillation of the fiber. The enhancement mechanism is identical to proposed local field enhancement mechanisms for SERS from metallic microstructures, where the analogous resonant modes are surface plasmon modes and the n, l values correspond to various multipolar plasmon resonances.

We thank Dr. Prabhat Gupta of Owens-Corning Fiberglas for supplying us with the glass fiber. We also gratefully acknowledge the partial support of this work by the National Science Foundation (Grant No. ESC79-20113) and the Gas Research Institute (Basic Research Grant No. 5080-363-0319).

^(a)Present address: Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112.

- ^(b)Present address: Chemistry Department, Brandeis University, Waltham, Mass. 02254.
- ¹J. A. Creighton, C. G. Blatchford, and M. G. Al-
- brecht, J. Chem. Soc. Faraday Trans. 2 75, 790 (1979).
- ²M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett. 26, 163 (1974).
- ³T. E. Furtak and J. Kester, Phys. Rev. Lett. <u>45</u>, 1652 (1980).
- ⁴D. A. Weitz, T. J. Gramila, A. Z. Genack, and J. I. Gersten, Phys. Rev. Lett. 45, 355 (1980).
- ⁵J. E. Rowe, C. V. Shank, D. A. Zwemer, and C. A. Murray, Phys. Rev. Lett. 44, 1770 (1980).

⁶P. N. Sanda, J. M. Warlaumont, J. E. Demuth, J. C.

Tsang, K. Christmann, and J. A. Bradley, Phys. Rev. Lett. 45, 1519 (1980).

⁷S. G. Schultz, M. Janik-Czachor, and R. P. Van Duyne, Surf. Sci. 104, 419 (1981).

- ⁸C. Y. Chen and E. Burstein, Phys. Rev. Lett. <u>45</u>, 1287 (1980).
- ⁹J. G. Bergman, D. S. Chemla, P. F. Liao, A. M.
- Glass, A. Pinczuk, R. M. Hart, and D. H. Olson, Opt. Lett. 6, 33 (1981).
- ¹⁰S. L. McCall, P. M. Platzman, and P. A. Wolff, Phys. Lett. 77A, 381 (1980).
- ¹¹W. H. Weber and G. W. Ford, Phys. Rev. Lett. <u>44</u>, 1774 (1980).
- ¹²M. Kerker, D.-S. Wang, and H. Chew, Appl. Opt. 19, 4159 (1980).
- ¹³J. Gersten and A. Nitzan, J. Chem. Phys. <u>73</u>, 3023 (1980).

¹⁴M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), p. 255.

¹⁵J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, Opt. Lett. 6, 272 (1981).

- ¹⁶G. Ritchie, E. Burstein, and R. B. Stephens, Bull. Am. Phys. Soc. 26, 359 (1981); C. Y. Chen, I. Davoli, G. Ritchie, and E. Burstein, Surf. Sci. 101, 363 (1980). ¹⁷T. J. Gramila, D. A. Weitz, and S. Garoff, Bull. Am. Phys. Soc. 26, 339 (1981); S. Garoff, D. A. Weitz, T. J. Gramila, and C. D. Hanson, Opt. Lett. 6, 245 (1981). ¹⁸H. G. Craighead and A. M. Glass, Opt. Lett. <u>6</u>, 248
- (1981); A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, Opt. Lett. 5, 368 (1980).
- ¹⁹P. F. Liao, J. G. Bergman, D. S. Chemla, A. Wokaun, J. Melngailis, A. M. Hawryluk, and N. P. Economou, to be published.

Surface Relaxation of ³He on Small Fluorocarbon Particles

L. J. Friedman, P. J. Millet,^(a) and R. C. Richardson Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853 (Received 7 August 1981)

The nuclear magnetic polarization of ³He on the surface of a fluorocarbon substrate is controlled by the polarization of the ¹⁹F in the substrate. The apparent relaxation rates of the ³He measure the coupling between the spin baths of the ³He and the ¹⁹F nuclei within the substrate.

PACS numbers: 76.60.Es, 67.70.+n

We have observed unusual nuclear relaxation and polarization phenomena in a fluorocarbon polymer in contact with films of ³He. Our measurements show that the spin temperatures of the ³He and the ¹⁹F are held in close contact, most likely through the nuclear magnetic dipolar coupling at the interface.

In our experiments we packed a powder of fluorocarbon beads in a cylindrical coil form 4.8

mm in diameter and 9.5 mm high. We then measured the relaxation properties of the ¹⁹F with various coverages of ³He on the surface of the beads. The beads were approximately 0.2 μ m in diameter and had a rather narrow size distribution. The polymer is quite similar to polytetrafluoroethylene (or Teflon) and is sold by Dupont under the trade name DLX-6000. Our measurements were conducted in the temperature range

between 0.5 and 4 K. However, the temperature is apparently not an important variable in the phenomena we report here.

The most striking consequence of the coupling between the spins of 19 F and 3 He is illustrated in Fig. 1 where we demonstrate a type of spin pump-

FIG. 1. Spin relaxation of ³He and ¹⁹F at 1.3 K and a field of 3.9 kG. (a) The recovery of ^{19}F following a spin-inversion pulse at the ¹⁹F resonance frequency. S_0 is the equilibrium signal of ¹⁹F measured at times longer than those shown. (The spin-inverting pulse is a little smaller than a π pulse.) (b) The ³He polarization is also inverted by the radio frequency pulse applied at the ¹⁹F frequency. The same pulse as that shown in (a) was applied to the 19 F. The data show the size of the ³He signal measured at the ³He resonance frequency at various times after the ¹⁹F inversion. (c) The magnetization recovery of 3 He when measured in the usual manner. The ³He spins were initially saturated with a $\pi/2$ pulse at the ³He resonance and then the signal was sampled at various times shown. The data here are plotted in the customary logarithmic form. T_{1} for ³He deduced in this manner is 200 msec.

ing. The results shown are for some experiments with approximately one monlayer of ³He. We found that the inversion of the spin population of the ¹⁹F through the application of a π pulse at the ¹⁹F resonance frequency also produced an inversion of the ³He spin population. The figure shows the recovery of ¹⁹F and ³He magnetization in several different types of pulse experiments. Figure 1(a) shows the recovery of the ¹⁹F magnetization following a π pulse at the ¹⁹F resonance frequency. The recovery is approximately exponential and the characteristic time is about 10^3 sec. Part (b) shows the change in magnetization with time of the ³He after the ¹⁹F polarization has been inverted with a π pulse at the ¹⁹F resonance frequency. The ³He magnetization also becomes inverted and recovers to equilibrium with roughly the same time constant as the 19 F. Part (c) shows the recovery of the ³He to equilibrium after the application of a $\pi/2$ pulse at the ³He resonance frequency. The characteristic time in this case is only 200 msec. In other pulse experiments with the same coverage and in the same magnetic field, we found that quite generally the ³He magnetization approaches a value determined by the ¹⁹F polarization state in a characteristic time of 200 msec.

In a related experiment, we polarized the ¹⁹F by raising the magnetic field to a large value, of order 10 kG, for several T_1 intervals of the ¹⁹F, and then after we reduced the field to 4 kG, an enhanced ³He magnetization persisted for times again characteristic of the T_1 of the ¹⁹F spins.

We were also able to change the spin temperature of the ¹⁹F through the repeated application of $\pi/2$ pulses to the ³He. After the application of several hundred $\pi/2$ pulses at the ³He resonant frequency with a repetition rate of 3 per sec, the ¹⁹F magnetization reached an equilibrium size roughly half of that observed in the absence of the ³He pulses. The application of a similar burst of rf pulses at nearly the same frequency, but not the ³He resonant frequency, produced no effect on the ¹⁹F signal, thus eliminating lattice heating as a possible explanation for this experiment.

The dominant relaxation mode for the ¹⁹F nuclei is the dipolar interaction with the ³He on the surface. In Fig. 2 the ¹⁹F relaxation time T_1 at 1.3 K and with a Larmor frequency of 16 MHz is plotted as a function of the amount of ³He admitted to the experimental cell. In the absence of ³He the relaxation rate is an order of magnitude slower than that observed with the optimum coverage of ³He. We assume that the peak rate occurs near

³He admitted (STP cm³)

FIG. 2. Change in ¹⁹F relaxation rate with ³He coverage. The relaxation rate of the ¹⁹F is enhanced when ³He is added to the fluorocarbon spheres at low temperatures. With the addition of ³He quantities larger than those shown in the figure, the ¹⁹F relaxation rate remains unchanged.

a coverage of one monolayer. However, the 0.7 cm³ (STP) of ³He at the peak is about $\frac{2}{3}$ of a monolayer on the calculated geometrical surface area of the fluorocarbon spheres. Our sample is too small for a convenient surface-area calibration through the measurement of absorption isotherms with helium gas.

The results shown in Fig. 2 were initially somewhat surprising to us. In order to verify that the spins of the ³He at the surface played the dominant role in the ¹⁹F relaxation, we repeated the experiment with ⁴He. We found that the addition of ⁴He to the bare fluorocarbon surface had no effect upon the relaxation of the ¹⁹F.

We can interpret the data shown in Figs. 1 and 2 with the following model. The ¹⁹F nuclei relax through interaction with the ³He at the surface; the ³He in turn is coupled to the thermal bath through the motion of the atoms on the surface. We label the ¹⁹F spins S and the ³He spins I, the uncoupled relaxation times of the two spin species $T_1^{\ S}$ and $T_1^{\ I}$, and the time coupling the two spin baths as $T_1^{\ IS}$. The measured ¹⁹F relaxation will be given by

$$\frac{1}{T_1^{smeas}} = \frac{1}{T_1^{s}} + \frac{1}{T_1^{surf}},$$

with $T_1^{\text{surf}} = T^{\text{spin diffusion}} + (N_s/N_I)(T_1^{IS} + T_1^{I})$. The time for surface relaxation of ¹⁹F thus includes the series processes for the diffusion of the spin excitation to the surface, the coupling of the excitation across the interface, and finally the intrinsic relaxation time of the ³He surface atoms where each of the N_I atoms shares the burden of relaxing N_s/N_I ¹⁹F spins.

The spin diffusion constant for the dipolar inter-

action between ¹⁹F spins is of order $a^2\omega_d$, where a is the distance between the ¹⁹F atoms, and ω_a $\simeq (\gamma_s^2 \hbar/a^3)$ is the rate of dipolar spin flips between ¹⁹F neighbors, with γ_s the gyromagnetic ratio of the ¹⁹F nuclei. For a sphere of radius rthe diffusion relaxation time is thus of order $T^{s,d}$. $\simeq r^2/D = r^2 a/\gamma_s^2 \hbar$. In our case with $r = 0.1 \ \mu m$, a = 3 Å, and $\gamma_s = 2.5 \times 10^4$, we expect this time to be of order 5 sec. Gates and Potter¹ have studied the spin diffusion of ¹⁹F in small Teflon particles with O₂ impurities on the surface for rapid relaxation. In our case the observed relaxation times of the ¹⁹F are much longer than the diffusion time and so the "bottleneck" occurs in the surface process. Even with this surface bottleneck, the surface process is faster than that available for the bulk so that in the presence of the ³He, T_1 (¹⁹F) $= (N_{S}/N_{I})(T_{1}^{IS} + T_{1}^{I}).$

The experiments producing the spin inversion of ³He after the π pulse on the ¹⁹F spins show that the ³He is more strongly coupled to the ¹⁹F spin bath than to the thermal reservoir of its own lattice motion. This coupling time constant is of order 200 msec, and we identify it with the parameter T_1^{IS} . The time constant coupling the ³He to the lattice might thus be²

$$T_1^{I} = (N_I / N_S) T_1^{S \text{ meas}} - T_1^{IS}$$
$$\simeq (N_I / N_S) T_1^{S \text{ meas}} \simeq 10 \text{ sec}$$

since $N_I / N_s \simeq 10^{-2}$.

The spectral efficiency of the interaction between the ¹⁹F nuclei and the ³He remains a perplexing problem. The field dependence of the relaxation rate might be expected to have the usual form for the dipole interaction³:

$$\frac{1}{T_1^{IS}} \simeq \frac{\gamma_I^2 \gamma_S^2 \hbar^2}{a_{IS}^6} \left(\frac{\tau}{1 + H_0^2 (\gamma_I - \gamma_S)^2 \tau^2} \right) +$$

where a_{IS} is the distance between the I and S spins, H_0 is the applied magnetic field, and τ is an atomic collision frequency. In the range of magnetic fields between 0.8 and 8 kG, we measure T_1 values for both ¹⁹F and ³He which increase roughly linearly with the magnetic field. Evidently the usual assumption of an exponential correlation function of the form $\exp(-t/\tau)$ is invalid.

The times we have measured for the ³He relaxation are comparable to those seen in other studies of ³He on a variety of surfaces such as glass and graphite.⁴ The linear field dependence of T_1 has also been observed on these other substrates. The question arises of whether the results of other experiments have also been influenced by possible nuclear dipole coupling to the substrate. It has usually been assumed that the removal of paramagnetic oxygen impurities on the surface is sufficient to ensure that intrinsic relaxation processes are observed on the surface.

The results of the present experiment also bear upon the interpretation of studies in bulk liquid ³He. The relaxation of ³He in bulk liquid is usually dominated by the surface processes at low temperatures. Models of surface relaxation of liquid ³He should thus include the strong interaction with nuclear magnetic moments in surfaces contacting the liquid. Most models of surface relaxation to date have considered only electronic or ionic moments in the substrate.^{5,6}

Also to the extent that these results are found on other substrates, the interpretation of experiments measuring the "anomalous surface magnetization" of liquid ³He may be changed. In a number of experiments a Curie-Weiss law has been measured for the ³He in the surface layer (or surface layers).⁷⁻¹⁰ Our results suggest that the polarization of the surface layer would be determined by the competition between the nuclear magnetic dipole interaction of the ³He with nuclei in the underlying substrate and the interaction with the ³He atoms in the bulk liquid. The temperature dependence of the surface ³He magnetic susceptibility should be governed by the polarization of the nuclei in the underlying surface and the relative strengths of the thermal coupling of the surface ³He spin bath with the bulk liquid and with the substrate nuclei. The intrinsic tendency of the surface layer toward any type of magnetic order may well be masked by the surface interactions.

This work was supported by the National Science Foundation through the Cornell University Materials Science Center under Grant No. DMR-79-24008 and by the U. S. Office of Naval Research.

^(a)Present address: Department of Physics, Hamilton College, Clinton, N. Y. 13323.

¹J. V. Gates and W. H. Potter, in *Proceedings of the Fourteenth International Conference on Low Temperature Physics, Otaniemi, Finland, 1975* (North-Holland, New York, 1975), Vol. 4, p. 5.

²One may be tempted to identify this time with the intrinsic relaxation time which ³He might have had if there were no nuclear moments or oxygen impurities within the substrate. This is not necessarily the case because the dipolar interaction contains terms coupling I^z with S^{\pm} and S^z with I^{\pm} . Ordinarily these terms which serve to change the state of the S population without changing the I spins are just as important as the cross terms coupling S^{\pm} with I^{\pm} . Curiously, in the case studied here this is not the case. The success of our spin pumping experiments depends upon the existence of a much stronger coupling between the two spin baths than the coupling of the ³He spin bath to the lattice.

³A. Abragam, *The Principles of Nuclear Magnetism* (Oxford Univ. Press, London, 1961), Chap. 8.

⁴An excellent review of the general subject is given by M. G. Richards, J. Phys. (Paris), Colloq. <u>39</u>, C6-1343 (1978), Proceedings of the Fifteenth International Conference on Low Temperature Physics, Grenoble, France, 1978.

⁵M. T. Beal-Monod and D. L. Mills, J. Low Temp. Phys. 30, 289 (1978).

⁶M. T. Beal-Monod and D. L. Mills, J. Low Temp. Phys. <u>42</u>, 433 (1981).

⁷D. F. Brewer and J. S. Rolt, Phys. Rev. Lett. <u>29</u>, 1485 (1972).

⁸H. M. Bozler, T. Bartolac, K. Luey, and A. L. Thomson, Phys. Rev. Lett. 41, 490 (1978).

³A. I. Ahonen, T. A. Alvesalo, T. Haavasoja, and M. C. Veuro, Phys. Rev. Lett. <u>41</u>, 494 (1978).

¹⁰H. Godfrin, G. Frossati, D. Thoulouze, M. Chapellier, and W. G. Clark, J. Phys. (Paris), Colloq. <u>39</u>, C6-290 (1978), Proceedings of the Fifteenth International Conference on Low Temperature Physics, Grenoble, France, 1978.