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Thus, the observation and identification of the
trapped-ion instability has been seen in many
ways. These are as follows: the dependence of
the wave amplitude on collisionality was in the
range and in the manner predicted for the trapped-
ion instability; the instability existed only on the
density gradient and it existed only when and
where there were trapped particles; and the ob-
served frequency of the trapped-ion instability
was at the predicted frequency ($6w,.*) and showed
the proper dependence on trapped fraction. Al-
though other experiments have operated in the
proper collisionality range for the trapped-ion
instability'®!! they were unable to satisfy require-
ment (1), w,<w,;. This experiment satisfied all
of the requirements and provides the first positive
identification of the dissipative trapped-ion insta-
bility.

This research was supported by the National
Science Foundation under Grant No. ECS79-17033
and by the Research Corporation.

!B. B. Kadomtsev and O. P. Pogutse, Zh. Eksp. Teor.
Fiz. 51, 1734 (1966) [Sov. Phys. JETP 24, 1172 (1967)].

M. N. Rosenbluth, D. W. Ross, and D. P. Kostomarov,
Nucl. Fusion 12, 3 (1972).

H. Eubank et al., in Proceedings of the Seventh In -
ternational Confevence on Plasma Physics and Con-
trvolled Nuclear Fusion Reseavrch, Innsbruck, Austvia,
1978 (International Atomic Energy Agency, Vienna,
Austria, 1979), p. 167.

‘R. Marchand, W. M. Tang, and G. Rewoldt, Phys.
Fluids 23, 1164 (1980).

5G. A. Navratil, J. Slougii, and A. K. Sen, to be pub-
lished.

63, C. Prager, T. C. Marshall, and A. K. Sen, Plas-
ma Phys. 17, 785 (1975).

D. P. Dixon, A. K. Sen, and T. C. Marshall, Plasma
Phys. 20, 225 (1977). :

p. Brossier, P. Deschamps, and C. Renard, Phys.
Rev. Lett. 26, 124 (1971).

D. P. Grubb and G. A. Emmert, Phys. Fluids 22,
770 (1979).

0y, Okabayashi and R. Freeman, Phys. Fluids 15,
359 (1972).

13, R. Drake, Phys. Fluids 20, 1013 (1977).

Helical and Nonhelical Turbulent Dynamos

M. Meneguzzi
Centre National de la Rechevche Scientifique and Section d’Astvophysique, Division de la Physique,
Centrve d’Etudes Nucleaives de Saclay, F-91191 Gif Sur-Yvette, France

and

U. Frisch
Centre National de la Rechevche Scientifique, Observatoive de Nice, F-06007 Nice, France

and

A. Pouquet®
Centre National de la Recherche Scientifique, Obsevvatoive de Meudon, F-92190 Meudon, France
(Received 13 April 1981)

Direct numerical simulations of three-dimensional magnetohydrodynamic turbulence
with kinetic and magnetic Reynolds numbers up to 100 are presented. Spatially intermit-
tent magnetic fields are observed in a flow with nonhelical driving. Small-scale helical
driving produces strong large-scale nearly force-free magnetic fields.

PACS numbers: 51.60.+a, 47.65.+a, 52.30.+r

The stretching of magnetic field lines by turbu-
lent motions in a conducting fluid is one of the
most frequently invoked mechanisms for the gen-
eration of the magnetic fields of the earth, the
sun, stars, and galaxies.' It may also lead to un-
desirable magnetic fields in the liquid sodium
cooling system of large breeder reactors.? 3
When the magnetic Reynolds number RY exceeds
a critical value R ¥, the stretching is sufficiently
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strong to overcome the diffusive effect of Joule
dissipation, thereby leading to dynamo action.
Specifically, consider a statistically stationary
turbulent flow with no magnetic field. Let a weak
seed magnetic field be introduced. For RY <R
the same stationary state is recovered asymptoti-
cally in time. For R¥ >R the flow bifurcates
to a new statistically stationary state. In this
nonlinear dynamo regime, the Lorentz force, by
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its reaction on the flow, prevents indefinite growth
of the magnetic field. This problem cannot be
studied within the kinematic*® framework (pre-
scribed velocity); it requires the complete mag-
netohydrodynamic (MHD) equations:

(8,—~ VV2)W==(V* V)V+ (D V)b = Vp+I,
(8,- Vb == (Ve V)b + (D * V)w';,
V-v=v-B=0.

Here V is the velocity, b the magnetic field (re-
scaled to give it dimensions of a velocity), p is
the total pressure (kinetic and magnetic), v and
n are the viscosity and magnetic diffusivity, and
f is a force which drives the flow. Incompres-
sibility is assumed.

The first numerical simulation of three-dimen-
sional MHD turbulence was performed by Pouquet
and Patterson®; in this decay calculation, at best
temporary magnetic field enhancement is ob-
served. A genuine nonlinear dynamo effect was
obtained recently by Gilman and Miller.” Theirs
is a convectively driven dynamo in a spherical
shell, a configuration used to model some aspects
of the solar dynamo.

The turbulent dynamo in the nonlinear regime
can also be explored by using statistical closure
techniques. For nonhelical turbulence, Léorat,
Pouquet, and Frisch?® obtain R #’s of the order of
a few tens. In the helical case, where the flow is
not statistically mirror symmetric, they find
that R ¥ can be substantially decreased. This is
particularly noticeable when there is a clear sep-
aration between energy-containing scales and the
largest scale of the flow, so that small-scale
helicity can destabilize large-scale magnetic
fields by the a effect.®

Investigating such questions by direct numeri-
cal simulation requires a very high resolution in
order to attain sufficiently high R¥’s and/or to
achieve sufficient scale separation. It then seems
advisable, at least for a first attempt, to mini-
mize geometric constraints. We assume here 27
periodicity in all three space directions. The
flow is driven by random forces. We use Gaus-
sian statistics, 6 correlated in time, homogene-
ous and isotropic, with prescribed energy and
helicity injection spectra F," and F,". Kinetic
and magnetic Reynolds numbers are defined by

RY=1,v,/vand R¥=1 v,/n

in terms of the integral scale /, and the rms ve-
locity v,.
The numerical integration of the MHD equations

is done by a pseudospectral method.® Two codes
were developed for the National Center for Atmos-
peric Research CRAY-1 computer, a 322 (in core)
which takes 0.5 s per time step and 642 (out of
core) which takes 16 s per time step (mostly in-
put/output). For unit Prandtl number v/%, the
maximum Reynolds numbers which can be reached
without substantial truncation errors are about 40
and 100, respectively.

Nonhelical dynamo: Intermitiency.—In nonheli-
cal flows, there is no a effect and the small-scale
motion produces essentially a turbulent diffusion
of the magnetic field. As noted by Kraichnan and
Nagarajan,® this may possibly suppress dynamo
action.!® Imposing zero mean helicity in a numer-
ical simulation will nevertheless produce rather
strong temporal fluctuations of the total (space
integrated) helicity. This can be overcome by
choosing a random force which is antisymmetric
under space reversal on each realization. The
resulting velocity field is also antisymmetric and,
hence, has zero total helicity.' The energy in-
jection spectrum chosen for the simulation is of
the form F,Y~k*exp(— k%), which has most of the
injection taking place near the minimum wave
number (% ,;,=1) and, hence, allows the highest
possible R#’s (about 100 with the 64° code). The
mean kinetic energy injection rate € (integral of
F,V) is taken equal to 1. The Prandtl number is
1, with ¥=1.2X107% the lowest realizable value.
There is a starting phase, with no magnetic field,
during which the Navier-Stokes equation is inte-
grated to a statistical steady state. This requires
a few eddy-turnover times (approximately one in
this calculation). At time ¢,, the beginning of the
dynamo phase, a weak magnetic seed is intro-
duced, with E¥(¢,)/E¥(¢,)=0.02. Here, EY and
E" are the kinetic and magnetic energies per
unit mass. The MHD equations are then inte-
grated for more than 10 turnover times. The evo-
lution of EY and E¥ is shown in Fig. 1. The ratio
E¥/EY grows to about 0.1 in 2 turnover times. Af-
ter that, there appears to be a statistical steady
state with only gentle fluctuations in E#. The
Reynolds numbers (RY=R*) are then about 100.
Direct numerical simulation thus supports the
prediction of closure calculations® concerning the
existence of nonhelical dynamos. Further evi-
dence will be given later in this section. The
reason why EV has strong fluctuations in both the
starting and the dynamo phases (cf. Fig. 1) is two-
fold: There are only a few Fourier modes in the
energy-carrying region, and they are being kicked
independently at each time step.!?
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FIG. 1. Turbulent dynamo with nonhelical driving.
Temporal variation of kinetic (£") and magnetic ()
energy. Reynolds numbers are R =R¥~100. The
time unit is the eddy-turnover timel (/v (.

The dynamo phase has a number of interesting
features. In Fig. 2, we show the kinetic and mag-
netic energy spectra E,” and E at £=27, Note
that there is a slight excess of magnetic energy
at high wave numbers, as previously found in
closure calculations.*!® The most striking fea-
ture is found in physical space. At time ¢=27,
the supremum over space of b is =3, comparable
to the supremum of » which is =5. Recall that
there is only 10% magnetic energy. This suggests
that b is intermittent, i.e., concentrated in small
regions of physical space. This is indeed seen in
Fig. 3, where we give, at {=23, a three-dimen-
sional perspective of the regions where b is with-
in less than 5% of its maximum. A similar cloud
picture for v shows essentially one solid cube
with a few indentations. No particularly obvious
correlation has been found between the intermit-
tent high-b regions and the intermittent high-vor-
ticity regions also observed in nonmagnetic tur-
bulence.'* The intermittent magnetic structures
can be followed in time; they have a lifetime of
about one eddy-turnover time. We believe that
our simulation, which has only 10% magnetic en-
ergy, is just slightly supercritical.'’® It is possi-
ble that we are just faced with transitional inter-
mittency. Note that purely temporal intermitten-
cy has been observed in systems with a few de-
grees of freedom which undergo a bifurcation
from a turbulent regime to another one with more
degrees of freedom excited.'®
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FIG. 2. Kinetic (") and magnetic (E¥) energy spec-
tra at ¢ = 27. Nonhelical dynamo with R” = R¥~100.

The 643 run has taken over 20 h on the CRAY-1
computer. This is not practical for exploring the
parameter space, e.g., varying R¥. In the 32°
simulations, at unit Prandtl number, the highest
reliable R is about 40 and gives only temporary
enhancement of b. At Prandtl numbers of about

FIG. 3. Spatial intermittency of magnetic field b in
the nonhelical dynamo at ¢ = 23, with R =R¥ ~100.
The shaded regions have b within less than 5% of its
maximum value,
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3, higher R¥’s (up to about 65) become accessible
and a dynamo effect is recovered. By substantial-
ly decreasing the RV (to about 20), it is likely that
we provide enough small-scale dissipation to pre-
vent truncation errors. This procedure was also
used by Gilman and Miller.” We used this pro-
cedure here to explore the critical region. For
the three values 35, 45, and 65 of R¥, we found
steady-state ratios E#/EY, respectively, of 0,
0.11, and 0.25. Here EV and E¥ are time-aver-
aged values. For R“=45, which is probably just
supercritical, E¥ has very strong temporal fluc-
tuations. For R¥=65, the temporal fluctuations
are somewhat milder; this run was continued for
more than one Joule decay time of the energy-
carrying eddies, thereby providing somewhat
stronger support for the existence of a nonhelical
dynamo than given by the RV=R¥=100 run. Spa-
tial intermittency of b (slightly stronger than in
the R¥=100 run) is also observed.

Helical dynamo: Buildup of lavge-scale magnet-
ic fields.—To favor helicity effects, the ratio of
the integral scale I, to the spatial period 27 must
be small. A drawback is that we severely de-
crease the maximum Reynolds number which can
be simulated with a given resolution. This can be
overcome by a modification of the dissipative
terms. In Fourier space, instead of vk® and nk?,
we use v’k%® and 7'k?® with a “dissipativity” 6
>1. This allows us to keep reasonably high Reyn-
olds numbers, in spite of the decrease in 7. It
may be shown that the large-scale dynamics re-
main essentially unaffected as long as 6 is small
compared to the spectral resolution (ratio of max-
imum to minimum wave number).

Our helical simulation is characterized by the
following parameters. The injection spectrum
is ~k*exp(- 0.08k%), which peaks at k=5. The
mean injection rate is € V=2, Helicity injection
is maximal (¥,Y=kF,"). The resulting turnover
time at injection is #,~57%/%, The values of v’
and n’ are 1072 and 2.5X 1073, respectively, and
6=1.5. A seed of magnetic energy of 2% is intro-
duced, and integration proceeds for about 130
turnover times, to £=45. Figure 4 shows the
time evolution of kinetic and magnetic energies
and of magnetic helicity. EVY is decreasing slight-
ly, but E¥ and — H” have an approximately linear
growth at long times and show no saturation
trend. At £=45, EY/EV=2, At first, magnetic
energy builds up near injection wave numbers.
Then' the peak of the magnetic energy spectrum
drifts to smaller wave numbers until it reaches
k in=1. It then keeps growing in amplitude at
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FIG. 4. Helical dynamo with driving at intermediate
scales (k= 5). Temporal variation of kinetic energy
(EY), magnetic energy (E*), and magnetic helicity
-H").

low k. At t=45, E,%/E, V=50 at k=1 and the
relative magnetic helicity kH,#/FE," is —0.96 at
k=2, i.e., nearly maximal (negative). Hence,
the large-scale b is mostly force free and pro-
duces only very little large-scale motion.

The linear growth is consistent with a two-scale
model introduced by Kraichnan.!” The small-
scale (here k ~5) dynamics of v and b in this mod-
el includes (i) random helical driving; (ii) coup-
ling between vand b by Alfvén waves due to a
strong large-scale (k ~1) magnetic field B; (iii)
damping by an eddy kinetic and magnetic diffusi-
vity. The @ coefficient, defined by (vXb)=aB,
is then proportional to B2 for large B.!” The in-
duction equation for the dynamics of the large-
scale B becomes, after averaging over the small
scales and neglecting Joule dissipation,

a‘§=vx<x7x6>=v><a(B)§, . 1)

with a(B)=- C&k,2B™%, Here, &' is the kinetic
helicity injection rate, %, an injection wave num-
ber, and C a positive numerical constant. It
should be possible to show that Kraichnan’s!” mod-
el and the resulting nonlinear dynamo equation
are asymptotically exact for large-scale separa-
tion and strong fields. Linear variation of H¥
with time is an exact consequence of (1). Indeed,
let B=VXA and H*=(1/2V)/B-AdV, where V is
the volume of the domain [here (27)3]. A simple
calculation then gives dH¥ /dt=C&k,™%. The
monotonic variation of H¥ the drift to small wave
numbers of the peak in the magnetic energy (and
helicity) spectrum, and the nearly maximal mag-
netic helicity at #=1 are consistent with a previ-
ously conjectured inverse cascade of magnetic
helicity.'318

We have benefited from discussions with P. A.
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