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New Interpretation of the Scalar Product in Hilbert Space
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The inner product of two states in Hilbert space is interpreted in terms of a relation-
ship bebveen two or more distinct physical systems. This point of view suggests a gen-
eralized notion of measurement, within which the familiar types of measurement occur
as special cases. A variety of novel measuring procedures are described, which relate
overcomplete sets of states for a given system to complete sets for some larger system
(of which the smaller system forms a part).
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The absolute square of the inner product (&g(y) l'

of two quantum-mechanical state vectors is tradi-
tionally interpreted as the probability that a sys-
tem in the state ( y) will be found to be in the
state (y) if it is subjected to measurements of

some complete set of observables of which (g) is
an eigenstate. This Letter presents another inter-
pretation, in which (&pl y) l' represents a relation
between two or more distinct quantum-mechani-
cal systems. The new interpretation carries with

it a richer and more general notion of measure-
ment, from which the familiar kinds of measure-
ment emerge as a special case. It has a number
of other advantages as well, as we shall describe
below.

Let us first indicate the basic idea as it applies
to a simple physical system. Consider a system
of two particles (in one dimension), one of which
is described by the one-particle state l y) and

the other by (g*) (that is, by the state &xl g)* in

the coordinate space representation, which we

have chosen for reasons which will presently be
clear). Suppose that measurements of the two
commuting observables x, -x, and p, +p, (where
x„x„p„and p, are the positions and momenta
of particles 1 and 2, respectively) are carried
out on the system. The probability density that
these measurements will yield

x, -x, =o and p, +p, =o

is given by

(2)

whereas in the traditional view, the inner product
gives the projection of one state on another in
Hilbert space, it appears in (2) as a measure of
the proximity of l q) to lg) in phase space.
Second, the probability appearing in (2) is not

l & g( y) (' itself, but rather (2n) '( & g( y)('. Two
particles in the same quantum state will not nec-
essarily coincide in space, for example, but the
propensity of two particles to coincide is propor-
tional to the absolute square of the inner product
of their two states. Finally, (2) suggests a new
kind of measurement process, wherein one of the

( &x, -x, =0, p, +p, =ole ~ g*& I'= l(2~) "j"d, d, q(x, )y*(x,)~(x, -x,) l'

= I(») "J v(x)y*(x) dxl'=(») '(&ply&l',

where I y y*&=—
I p& (y*& and y(x) =- &x(y&, etc

This is an interesting result in a number of re-
spects. First, we have found that (2n) '(&pl y)('
is the probability that one particle in the state
l y) and another in the state ( y*) have the same
positions and opposite momenta. Since l g*) is
a time-reversed (i.e. , momentum-reversed) ver-
sion of (g), however, (2n) '(&g(p) l' can be
understood as a propensity of two particles, one
in the state l y) and the other in the state l f),
to have the same positions and the &&~e momenta
(such a propensity cannot be directly measured,
of course, since (p, -p„x, -x,]&0). Thus,
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two particles is initially prepared in a definite
state, and is considered as part of an apparatus
for measuring certain properties of the other par-
ticle. In the remainder of this Letter we will
describe a few of the varieties and uses of such
measurements.

To begin with, let us generalize the calculation
I

in (2). Suppose that the state of our two-particle
system is, as above, I y& I $*&, and that meas-
urements of x, -x, and p, +p, are carried out.
The probability density of finding the result

x, -x, = p and p, +p, = o.

is given by

where'
results of measurements on a two-particle sys-
tern. The possibility of distinguishing between
the various elements of such an overcomplete set
of states by means of measurements on some
larger system (of which the system of interest is
a, subsystem) is a new and potentially very useful
by-product of this approach.

r- What happens here is that a complete set of
ct states for the two-particle system (the states

lx, -x, + p, p, +p, = n&, for all n, p) is projected, by
fixing the state I p*& of the quantum ruler, onto
an ove~complete set (the states

I
o., p&&) for the

one-particle object. This technique can be ex-
ploited to generate an infinite variety of overcom-
plete sets of states for any given system, and
each such set will be associated with a relation
of the form of (6), which, as above, will follow
trivially from the measurement interpretation.
Thus, for example, we can employ two rulers

) rather than one, and here the measurement of
three commuting observables of the three-par-
ticle states,

In, 0& p
-=exp!i(~x +op)] I q&.

Thus if the particle associated with the measur
ing apparatus (hereafter this particle will be
called the "quantum ruler" ) is prepared in any
state I g*&, and if the state of the other particle
(hereafter called the "object") is I y&, then the
probability of obtaining the results (8) is propo
tional to the absolute square of the inner produ
of I y& with In, P& &

(that is, with
I g& translated

through a distance P in coordinate space and n
in momentum space).

If, for example, the quantum ruler is prepare
in the position eigenstate I

y*& =
I x = 0&, then th

states I o., P& &
for all values of n and P will for

the complete set of all possible position eigen-
states. In this case the above procedure reduc
to a familiar measurement of the position of th

object; that is, the probability of a given value
for P (integrating over all possible values for a
will be exactly I

(x= PI y& I'. Similarly, if the
ruler is prepared in an eigenstate of momentum,
then the states I u, P& &

will form the complete set
of momentum eigenstates, and the procedure will
measure the momentum of the object.

Of more interest, however, is the case where
I y& is an eigenstate neither of position nor of
momentum. In this case the states I n, P&& will
form an ovexcomplete set (if

I y& is taken to be
a Gaussian in coordinate space, for example, the
states I n, P& &

are the well-known coherent
states). Whatever state is chosen for I j&, the
measurements of x, -x2 and p, +p, must neces-
sarily yield &0&ie result, and thus it follows that

(») 'J „«dP I ~, P&~~&~, Pl =&, (6)

where I is the identity operator. Equation (6) has
traditionally been demonstrated by means of pure-
ly mathematical arguments'; in our analysis, on
the other hand, (6) follows directly from the ob-
servation that n and tl can be interpreted as the

Xi -X~=K~

+I +3

pi+p2+ps = 6~

will give rise to a three-parameter set of over-
complete states for the one-particle system, and
to an associated relation

pr f d6dedql 6, e, q&&6, g, pl=a, (8)

where N is a normalization constant. '
An analogous approach can be taken with dis-

crete observables. If, for example, L, ~ L, is
measured in a two-spin system, together with
L, ' +L, i'~, the set of possible results can be
used to parametrize an overcomplete set of
states for one of the spins (the object) in terms
of its projection on the other (the ruler).

In every case relations of the form (6) and (8)

I&x, x.-=P, p, +p. =~l v q*.& I'= I(2~) "J"„dx,d .v(x,)q*(x.)6(x, -x.—0) expt. l~(x, +x.)/2] I'

= I(») ~' J d q(x)y*(x+0)e' "e'""'I'=(») 'l, &~, Pl q&l',
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will emerge, and frequently theorems (such as
are familiar for the coherent states) which as-
sure the representability of any operator in
terms of its diagonal matrix elements in an over-
complete basis will follow in a very natural way
from our analysis. ~'

These issues and others will be the subjects of
a forthcoming publication. The purpose of the
present note is to introduce an alternative inter-
pretation of the inner product as a relation be-
tween two or more distinct quantum-mechanical
systems, and to indicate how this interpretation
naturally lends itself to a new and more general
notion of measurement, wherein various quantum-
mechanical systems are compared directly to
one another, rather than to a classical "measur-
ing rod,

This work was supported by the National Sci-
ence Foundation under Grant No. ISP-80-11451.

Where x and/ are operators N. ote that in the co-
ordinate space representation

exp[i (o.x + iiP) j = exp(io'x) exp(iP p) exp(iso'P).

'See J. H. Klauder, J. Math. Phys. (N. Y.) 4, 1055,
1058 (1963).

The states
~ &, e, q) will in general take the form of

products of two wave functions displaced by different
amounts in phase space, viz,

p(x+ e)y(x+ g)e™.

The interpretation of such products as one-particle
states (i.e., as eigenstates of one-particle observables)
is cumbersome, at best, within the traditional point of
view. In our analysis, on the other hand, they emerge
in a very natural way.

Q,. J. Glauber, Phys. Hev. 131, 2766 (1963).
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Math. Phys. (N.Y.) 6, 734 (1965).
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