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A molecular dynamics study on a system of infinitely thin hard rods is reported. At low
densities, rotational and translational diffusion is adequately described by the Enskog
theory, but at high densities (p.*»1) large deviations are observed. For p*»l, the ro-
tational diffusion constant (D„) and the longitudinal translational diffusion constant (D~~)

are compared with scaling predictions. The molecular dynamics results confirm that D„
—p*, and are consistent with a predicted divergence of D~t

-p*

PACS numbers: 05.40.+ j, 66.10.Cb

A fluid consisting of infinitely thin hard rods
("hard lines" ) is remarkable in that all of its
structural properties are those of an ideal gas,
whereas all of its transport properties are non-
ideal and strongly dependent on density. The ab-
sence of structural correlations is a direct conse-
quence of the fact thai the hard-line system has
zero excluded volume; at any density, all molecu-
lar positions and orientations are equally likely.
Obviously, as the configurational part of the parti-
tion function equals V"/N!, the pressure of a
hard-line fluid must follow the ideal-gas law. In
contrast, the dynamics of hard lines is very sen-
sitive to the presence of other lines. In this Let-
ter, we present results of molecular dynamics
(MD) simulations on a system of hard lines, over
a range of densities. %e compare the results of
these simulations with theoretical predictions for
the density dependence of transport properties.
Although we will briefly indicate the nature of the
theories involved, we must refer the reader io a
subsequent publication' for more details. Similar-

v ~=(1.705. . .)/p". (2)

In the above equations, reduced units have been
used: p*=pf-', where p is the number density

ly, space does not permit us to elaborate on the
computational method; Ref. 1 mill contain a de-
tailed discussion.

Theoretical predictions can be made about the
dynamics of hard lines (in particular about trans-
lational and rotational diffusion), by using two
very different approaches. The first is the well-
known Enskog method for computing transport
properties (we use the phrase "Enskog theory" in
the sense explained by Chandler' and by O'Dell
and Berne' ). Because of the absence of structur-
al correlations in the hard-line fluid, the follow-
ing very simple expressions result for the self-
diffusion constant D, and the angular momentum
correlation time 7 ~'.

i) =(2.303. . .)/p+
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and I. the length of the rod. We define I. to be the
unit of length, m (the ma.ss of the rod} to be the
unit of mass, and AT to be the unit of energy. The
moment of inertia of the rod is chosen equaj to
~, which corresponds to a uniform mass distri-
bution. The collision frequency in a har d-line
fluid can be calculated exactly:

I' =(1.237 66. . .)p*. (3)

At high densities Eq. (3) is still valid, but the
Enskog expressions [Eqs. (1) and (2) ] may fail.
However, it is precisely at high densities (p"» 1)
that theoretical predictions can be made about
rotational and translational diffusion, using scal-
ing arguments similar to those presented by Doi
and Edwards' (henceforth referred to as DE).
These authors have developed a theory of Brown-
ian dynamics of rodlike macromolecules in con-
centrated solutions. One of the predictions of
the DE theory is that for thin inflexible rods, the
following relation should hold between the rota-
tional diffusion constant D„, and the longitudinal
translational diffusion constant D

~, (i.e. , along the
rod axis):

D D /pg2

The basic idea behind this expression is that the
reorientation of the rods is constrained by the
presence of other rods. Only when one of the con-
straining rods diffuses away (typically, in a time
1/D ~~) ean the constrained molecule perform an
angular jump of order ~ = p" '. Several attempts
have been made to test the DE theory experimen-
tally, ' by using light scattering to study the rota-
tional dynamics of long rodlike viruses. There
are, however, some discrepancies between theory
and experiment and it is not obvious, at present,
whether these discrepancies are due to deficien-
cies in the DE theory, or to the fact that real
viruses are not completely rigid, nor infinitely
thin. MD simulations on a hard-line system
should provide a more direct test of the DE theo-
ry. It should be noted, however, that the DE
theory was derived for rods performing Brownian
motion in a viscous fluid. For smooth hard lines,
Eq. (4) has to be modified slightly, ' and reads

D„1/p*'. - (4a)

The high-density behavior of D
~i

can be predicted
by extending the scaling arguments used by Doi
and Edwards. One arrives at a remarkable pre-
diction, namely that D ii should di verge at high
densities:

lim D~-p+'"

The reason for this unexpected behavior is that,
during a collision, only forces prependicular to
the molecular axis act on a smooth hard line. As
a simple approximation for the rate of change of
the correlation function of the longitudinal veloci-
ty, C

~~
(t ) = (v ~~

(0)u ~~ (t)), we may write

c~, (t) =-~(»n'e(t))c (t), (6)

TABLE I. Density dependence of computed collision
frequency {I'), longitudinal and transverse diffusion
constants (D~~ and D+), and the decay times of the cor-
relation functions of angular momentum (~J}, Ci(t)
(~,), and C2{t) (T,).

T2

1
2

4
6
8

16
24
32
48

1.24 2.59
2.44 1.37
4.89 0.82
7.24 0.60
9.99 0.53

19.8 0.50
30.2 0.49
40.0 0.50
61.5 0.76

2.30
1.05
0.51
0.36
0.25
0.11
0.073
0.049
0.021

1.69
0.93
0.44
0.31
0.20
0.088
0.058
0.039
0.021

0.12
0.14
0.21
0.25
0.30
0.51
0.73
0.93
1 ~ 54

0.49
0.30
0.22
0.17
0.18
0.23
0.36
0.36
0.56

where 9(t) is the angle over which the rod has
rotated since t =0. The "friction constant" y is
proportional to the collision frequency, and hence
to p*. From Eq. (6) it follows that in the kinetic
regime (t(I' '), Cf~(t)-exp(-y(e')t'/3), where
(~') is the mean square rotation frequency of the
rods. In the rotational diffusion regime (I' ' « t
«D„'), C~~(t) decays as exp(-2yD„t'), and for t
»D„', it should decay as exp(- 2/3yt). At high
densities, the correlation function should become
predominantly Gaussian, and hence D „=(&/2yD„)"2

p g&/2

The algorithm that we used to solve the equa-
tions of motion for the hard-line fluid is rather
different from the conventional MD procedures
for hard-core systems, ' and will be described in
Ref. 1. Suffice it to say that the method is exact,
yet not prohibitively time consuming. Runs
were done on a j.00-particle system at densities
p*=1, 2, 4, and 8, and on a 500-particle system
for p*=16, 24, 32, and 48. Periodic boundary
conditions were used. All runs were 20000 colli-
sions long. The estimated noise in the computed
(single-particle) correlation functions is (1-2}%.
At all densities studied autocorrelation functions
(ACF's) of the molecular center-of-mass velocity
(v(T) v(7 +t)) (decomposed into components paral-
lel [C ~~(t)] and perpendicular [C,(t)] to the molecu-
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FIG. &. Inverse rotational diffusion constant g„')
vs the square of the reduced density (p* ). D„was ob-
tained with use of Eq. ('7) on &~(t) (circles) and on 4~(t)
(stars). The dashed line is a best fit to the high-density
points.

lar orientationj at time T were computed, as well
as the ACF's of the molecular angular momentum
[C~(t) = (J(0) ~ J(t))]. In addition, we computed the
orientational correlation function C, (t) =(P,[u(0)
~ u(t)]) and C, (t) —= (P,[u(0) ~ u(t)]), where u(t) is the
molecular orientation at time t and P, is the 1th
Legendre polynomial. All correlations were
studied out to 25 collision times. Table I con-
tains a summary of the transport properties ob-
tained from the MD simulation. Tabulated are
the collision frequency ~, the diffusion constants
D, i (see below) and o~, the decay time ~~
[=J, C~(t) dt/C~(0)], and the orientational correla-
tion times T, and ~, [—= f, C, (t) dt, t =1,2].

At low densities (p*(8), the velocity and angu-
lar momentum ACF's decay exponentially with a
slope that agrees well with the Enskog predic-
tions. At these densities, the orientational corre-
lation functions closely follow the behavior pre-
dicted by a J-diffusion model (with a "correlation
freiluency'* equal to 1/~~ "' '").' ' At high densi-
ties, all correlation functions show marked de-
viations from the Enskog (or J-diffusion) pre-
dictions. With increasing density, the decay of
C~(t) and C (t) becomes faster than exponential,
and for p*&30 both ACF's develop a negative min-
imum after about six collision times (6Tsc). C, (t)
and C, (t) decay exponentially at high p*; from the

-2.0
0 10

I
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FIG. 2. ln4 g (t) vs t. t is expressed in mean collision
times. Stars, p*=l; solid circles, p*=8; open tri-
angles, p*=16; asterisks, p*=24; open circles, p*
=32; solid triangles, p*=48.

slopes of these exponential correlation functions
we determined the effective rotational diffusion
constant 0„, using the relation

—lnC, (t) = —E(l +1)D„(t=1,2).

Figure 1 shows a plot of D,„'vs p~'. Clearly, at
densities p*) 8, the (modified) Doi-Edwards pre-
diction [Eq. (4a)] is in good agreement with the
observed density dependence of D„. Figure 2

shows the time dependence of ln[Cii(t)]. Several
points should be noted. First of all, the initial
slope of In[Cia(t)] is very flat; in fact, it follows
the predicted l ' dependence. One should also note
the dramatic positive departures from the Enskog
predictions; for p*) 24, v

~i persists for much
longer than 257~&. The criteria formulated below
Eq. (8) predict predominantly Gaussian behavior
of C,i(t) for I' '«t«D, '. For densities p" =32
and 48, D, ') 257~~. At these densities one might,
therefore, hope to observe Gaussian decay of
Ci~(t) in Fig. 2. Inspection of Fig. 2 suggests
that the decay of Cii(t) is, in fact, simply expo-
nential, but when ln[C ii(t)] is plotted versus t ',
it is found that the high-density data are fitted
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the nature of the extrapolation, D ii increases with
increasing p* for p& 24. The corresponding
Enskog predictions are shown for the sake of com-
parison. Figure 3 strongly suggests that D

i~
di-

verges as p*- ~. On the basis of the present data
we are, however, unable to confirm or reject the
P*'" dependence predicted by Etl. (5). As well
as providing an unambiguous test of the limiting
theories referred to in this Letter, the MD data
should prove useful in the development and testing
of any further unified theory of transport process-
es in fluids of strongly anisotropic molecules.
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FIG. 3. Dit {circles), D~ (squares), and TrD =(2D&
+Dpi)/3 (stars) vs reduced density. For p*=32 and 48,
two values for Dii are shown; the lower value is based
on a Gaussian extrapolation, the higher one on an ex-
ponential extrapolation (see text). The solid curve is
the Enskog prediction t Eq. (1)].

equally well by a Gaussian. On the basis of the
present results we are unable to eliminate either
possibility. The diffusion constants D |i and Di
were obtained from the integrals of C ii(t) and

Ci(t). In order to perform the integral of C„(t)
for p*&24, we extrapolated Cii(&) for &&25vsc.
Both Gaussian and exponential extrapolations were
used. It is seen in Fig. 3 that, irrespective of
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