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Random Elastic Scattering: Long-Range Correlation and Localization
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Low density of random elastic scatterers provides a long-range correlation between
transmitted and incident wave functions in any dimensionality. Exact formulas prove it
They also demonstrate different localization lengths for different quantities. The exper-
imental implications are strong localization in very pure wires at reasonable tempera-
tures and periodical resonance-type minima and maxima of a residual resistance in a
static magnetic field. The results are also true for any (e.g. , electromagnetic wave)
random scattering.

PACS numbers: 71.50.+t, 72.10.Fk. , 72.15.Qg

The well-known peculiarity of random elastic
scattering (RES), which makes it drastically dif-
ferent from inelastic scattering, is localization. ' '
However, the phase randomization in RES is
taken for granted. " In this paper I prove a
strong long-range correlation in any dimensional-
ity for an ensemble average' of a RES (when no
inelasticity and incident-particle interaction are
present): at low RES density, the average scat-
tering matrices are almost diagonal. This re-
minds one of a one-dimensional (1D) one-channel
situation, when a strong localization would be
easily observable, and since resistance reduces
to scattering characteristics, "" it implies a
new avenue for the experimental observation. of
strong localization.

While commonly used very dirty and very thin
samples provide only a weak localization, very
clean and perfect samples may provide a strong
localization with all its unusual qualities: resis-
tance irreproducibility' ' and exponential depen-
dence on temperature and conductor length (cf.
Refs. 12, 12a, and 13, where, as everywhere else,
RES phase randomization was assumed). Con-
sider a cylindrical wire (of an arbitrary length
and cross section) with nonoverlapping impurity
projections on the wire axis x, i.e., with low
enough impurity density n;: n, «(d, S) '. [d, is
an impurity size along x, and S is the wire cross-
section area; the inequality is always true in a
"nematic liquid crystal" of disk impurities. The
jth impurity potential energy is

Occam(x

—x&), M,
is an incident particle mass, r is a transverse
radius vector and 5 is a delta function. j Such a.

wire can be separated into one-impurity-contain-
ing sheets, between which the potential energy
(inside the wire) is zero, and where wave func-
tions are 10 plain waves with amplitudes modu-
lated in the cross section. This resembles a 10

multichannel situation. The relation between
wave-function amplitudes on both sides of an im-
purity is provided by a "transfer" matrix, which
is obviously multiplicative and reduces the total
scattering to a single-impurity average (over all
possible transverse positions) scattering. The
latter, and thus the former, is almost diagonal
(with the accuracy s/S, where s is the impurity
cross section). This long-range correlation
(which is rigorously proven later) implies "on
average" the noninterference of different scatter-
ing channels and thus a 1D-type resistance
(pseudo-1D case, with the localization length I.,
of order of an elastic mean free path l) in a rea-
sonable temperature interval, where an inelastic
mean free path l,. &l.

All of these results are related to n,.Sdp «1 and
to the possibility of introducing (in the absence of
impurities) a local longitudinal wave vector k„.
They are valid for arbitrary cross section (con-
stant or periodically changing along x; any ir-
regular change in the cross section is an "im-
purity" ), length, and boundary conditions (e.g. ,
specular or transversely periodical ones). They
are also valid in a static magnetic field, parallel
or perpendicular to x, and applicable to any kind
of an elastic scattering (e.g. , of electromagnetic
waves) in the absence of incident-wave interac-
tion.

The main experimental problem is probably to
match rs, Sdp «1 with the specular boundary re-
flection. In this aspect a large de Broglie wave-
length (and therefore, e.g. , semimetals Bi, As,
Sb) is helpful.

A single-impurity transmission is inversely
proportional to the final-state longitudinal wave
vector k„(and thus the major contribution to
conductance is provided by k„=k» where k F is
the Fermi wave vector), and depends en its
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minimal value k. The latter, for a given k F, is
determined by the (transverse) quantification.
A weak magnetic field H affects the quantifica-
tion and periodically provides"'"' k = 0 at eH/ch
-k „'~'d ' ' (d is the wire thickness). When k =0,
then the wave with k„=0 is completely reflected,
while the reflection, and thus the corresponding
localization length, of k„-k F decreases by a fac-
tor of (kFd, ) '. This implies sharp resonance-
type conductance maxima, with a possible change
from a strong to a weak localization. The change
starts when k is of order of the inter-k„distance
k/d, and dominates the reflection when k ((SkF ') ',
D being a dimensionality. Temperature g * smears
k F by k F(KBT*/e,) and k„—= (k,' —~')' ' (in the vi-
cinity of k„=0) by k F(KBT*/e,) ' ' (K, is the Boltz-
mann constant, eF is the Fermi energy, and ~ is
the transverse wave vector). Thus, the localiza-
tion length starts decreasing with II when T*(e„
-k'/2M, d', the relative decrease being (K,T*/
e „)' '(Sk „') ', and is maximal when T*(e„(dk „)-'

Eg /6p.
A strong strictly longitudinal (H ~~x) magnetic

field (with cyclotron radius r, «d) simplifies ex-
perimental requirements (anisotropy may also be
helpful): (i) Except for boundary effects in the
vicinity r, of wire surfaces, surface reflection
becomes almost unimportant. (ii) In the trans-
verse plane an electron remains within the area
&r, ', so, if n;Sd, »1, a large magnetic field may
provide a transition to a strong localization. (iii)
A magnetic field quantization replaces e„ in the
above inequalities by RQ, (Q, is a cyclotron fre-
quency; boundary effects are again neglected).
In semimetals this may allow for the resonance
(k=0) observation. (iv) The values of "quantum"

magnetic field (k'0,
& &F ), which leave only k„=0,

provide a resonance-type decrease in the localiza-
tion length, and increase in the resistance, and

thus may imply a transition to the localization.
But note that boundary effects may become the
major ones.

Now I derive analytical formulas for multipar-
ticle scattering. According to Landauer, ' a 10
conductance G = (e'/~R)

~
T

~
'/(1 —

~
T I '), with T

being a conductance transmission matrix. The
Landauer formula is applicable to current-carry-
ing 1D one-channel wires (with insulated sur-
faces), imbedded in a cylindrical wire with a giv-
en arbitrary dimensionality resistance inside
(far enough from 1D junctions). In this case, by
Ref. 12, the total (1D) transmission matrix T,

TTz' &r, T and 7z are, correspondingly,
the transmission matrices of the left junction,

the given resistance, and the right junction. The
calculation of ~~ and 7~ is simple and straight-
forward; the task is to evaluate 7".

Suppose a wave function to the left and to the
right of an arbitrary scatterer equals, corre-
spondingly, u+(+ —u ( and u+'(, ' —u '( ' (sub-
scripts denote the direction of the wave: + for a
wave moving to the right, -to the left; the g's
form a complete set and, as well as n's, are the
vectors in the space of quantum numbers). Then
u, '=u, r, -u 'p and u =u,p, —u '7, (7 and

p are transmission and reflection matrices), and

(cf. Ref. 14) thus"
(u„u ) =(u, ', u ')0;

(2)

Q,.,= exp(iskx „+iKr, ),

I',
q

——i(2k„) '[y, yqV'], (5)

where k» = &»&&

By Eqs. (2) and (4), &~ —1 =Q &„+' ' '
~

e.g. , (+„9, ')„„, each term, by Eq. (5), is pe-
riodic with respect to x, and r, Reducing all N

scatterer positions to these periods and intro-

(1)

(p, -' —p, 'p, /

Applying Eq. (1) to N consequent scatterers and
to their total scattering (with reflection and trans-
mission matrices g and 7.

' and n '=0 for the
transmitted wave), one obtains

(r ', -Z -'~)-=(I, 0) g(");
e(") = e o ~ e

,, Here I and 0 are unity and zero matrices; x, „
)x, . If the jth impurity is situated at (x, , r, ),
then an obvious wave-function transformation re-
duces 0, =—0(x, , r, ) to H,

o—= 0(0, r, ):

o, s =*1, n, =exp(i', ), (3)

where k„„=5„„k„, k „=(k' —~„')'~' is a longitudinal
wave vector k„ for a given set of transverse quan-
tum numbers v (Rek„, Imk, ~ 0), and K, is a trans-
verse wave vector. Equations (2) and (3) reduce
0 to an individual scattering. "'

Consider, for simplicity, an individual disk
scattering, described by the Schroedinger equa-
tion ag+k'g= 5(x) V(r)g. An incident wave g,„
=exp(isk„z) y„(s =+1; y„'s form a complete set
of orthonormal transverse wave functions~ t.Aj
= JA dr; cr, s = +1; a bar denotes a complex con-
jugation; V(r) = V'(r —r, )j provides

g, =1+g,.', (0,. ') „=vQ„ I'0„'; (4)

1016



VOLUME 47, +UMBER 14 PHYSICAL REVIEW LETTERS 5 OCTOBER 1981

ducing the corresponding probability density, one
obtains P, 8, , '~ (Q, e,„'), where angular
brackets denote an ensemble average. Similarly,
8&~) (8'"&) (but cf. Ref. 6).

Still, the knowledge of an ensemble average for
al,l impurity densities may allow one" to deter-
mine a typical value. First evaluate (8 " ). Ac-
cording to Eq. (2), x,„&x,; suppose 0 (x,. (L.
The corresponding probability density P (of any
of N RES being at x„of any of the remaining N
—1 being at x, &x„etc.) is"

I =(X/L)([(X-1)/L]t(x, -x,)j "
=N IL II t(x,„-x,), (6)

with t(x) = 1 for x & 0 and t(x) = 0 for x (0. (Thus,
Abrahams-Stephen averaging' with P =I. " is ap-
proximately valid only for large interimpurity
distances. ) Equation (6) enables one to evaluate,
e.g. , the ensemble averages (8" ) and (T ').

r„„+=i(2[ v')k„) 'v„v„. (13)

The individual-scattering model (13) yields the
unitary relation (i.e. , current conservation) and
allows one to evaluate any (nonaveraged) scatter-
ing quantity by virtue of the simpliety of the eal-

[ V']n;k ', if ak» c, '»', La

Rein(T ') -( n; L[ V']'/(Sk ')', if ak»c»',
ll L~[voj(~ ~ D)» jf gk «Q

where D is a dimensionality, a = w/kF, c, =a n, ,
and k is real. Thus, the (T ') localization
length has a, resonance dependence on the incident
(real) k and rapidly changes in the region ak„
-c,. ' '. A typical k -kF implies, when a~2, no

localization and no mobility edge in ( T '). Small
k «p 'c,. '»' provide the (T ') localization in a, ny

dimensionality. All results are valid also for
mirror wire boundaries, when s «(S/Ln, . )'»', s
being an impurity cross-section area. A static
magnetic field H Ilx and H &x here and on changes
only the quantization (i.e. , v, p„).

To evaluate nonaveraged quantities, assume a
transverse impurity size d, «a. Since only v

and/or p. &d/d, are of importance (when v-d/d„
then a„-m/d, »kF; note that at the resonance
only ~„=kF matters), [y„y„V']-[p„V'][p„V'j/
[ Vo] —= V, V„/[ V']. The corresponding scattering
is described by Eq. (5) with I' replaced by I'*:

'sS,

1.»gc -'

(10)

(11)

(12)

culations with r* (since, e.g. , r*' = r+ TrI'*,
etc. ; the details of these rather boring calcula-
tions will be presented elsewhere" ). For in-
stance,

T=1- Q 0,.+(1+TrX)),, , 'r*A~, + ',.
(14)

D&, , = e px[i k
l xz- x». i+ i Pc (r, , —r& ) ]I'*.

Tr denotes the trace with respect to matrix in-
dices v and p. Now one can also evaluate any
averaged quantity. For instance, when the inter-
impurity distance is large enough, one can use
Abrahams-Stephen averaging' with P = I. " and,
similar to Hefs. 12 and 17, obtain for a multichan-
nel 1D wire (T)-[v']", ((7"7') ')-[(v"7') ']~,
and

—Rein(T) -Lk 'n, [ V']f/(1+ f'),
t=ZI V„I'/(2k„[ V'))" [ V'l;

Rein((T'T) ')-L[ V']'n, a' ~K*,

K*=(a~ '/S)Q(ak ) '.

Equations (15) and (16) provide the (T) and
((T'T) ') "resonance" at mink„=k =0, indicated

(15)

(16)

According to Eqs. (2) and (6),

(8&"))=xtL-"~„(L);

a„(L)=S 'J [8(x)]a~,(x) Cx, a,(x) =1.

By Eq. (7), A(g; L) =P g"a„(L) (sum from N =0
to ~) yields the equation sA/BL = gB(L)A, A(&; 0)

Thus, accounting for Eq. (3), A(f/L; L)
equals

P (g'/x i)(e&"')

=exp(iEL) exp(-iEL+ gS '[ 8']), (8)

where E„=nb„k; while Eq. (4) provides

[ 8'],„=6„„(1+&(2k,) '[l q. l'v']]. (9)

Equations (8) and (9) complete the calculation of
the average-generating S matrix of the scattering
matrix 8 for an arbitrary V(r) and prove its dia-
gonality (with respect to quantum numbers), i.e.,
the long-range correlation. The calculation of
diagonal terms reduces to a 2 x 2 matrix and
provides, e.g. , the following (T ') „localization
lengths:

IOI7



VOLUME 47, NUMBER 14 PHYSICAL REVIEW LETTERS 5 OCTOBER 1981

earlier —cf. also Refs. 12 and 12a. (The accur-
ate calculation at f-0 accounts for a small dif-
ference between I'* and 1.) In Eq. (15), t-1 for
D = 1, t -

~

V') In(a/d, ) for D = 2, and t-
)

V') d,' o

«» -3. By Eqs. (10)-(12), (15), and (16), the
localization lengths are very different for (T),
(T '), ((TT+) '), and resistance. "

If the impurity size is d, 0 in all directions,
then, to allow for the nonoverlapping impurity x
projections, d, must be less than the average in-
terimpurity distance d, -1/n;S. Until d, &a, i.e.,
until n,-Sg &1, the finite value of d, should not be
i.mportant. But when n&S is large enough, n,. Sa
» 1, then the "allowed" impurity size d, &(n,.S) '

provides a single-impurity attenuation, which
tends to zero when d, -0 (and D ~ 2). This may
signal the crucial role for D ~ 2 of the assumed
nonover lapping of impurity proj ections. Another
very important problem is how much the results
of this section depend on the scattering model
(13). The presented approach is straight-forward-
ly generalized to any (e.g. , electromagnetic wave)
scattering.
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skepticism which forces me to find the exact so-
lution; to Professor B. Halperin for the sugges-
tion of periodic boundary conditions; and to Pro-
fessor P. Anderson and Professor P. Platzman
for valuable discussions on a long-range corre-
lation,
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The first measurement is reported of low-energy (20 meV} structure in the low-temper-
ature dielectric function of two valence-fluctuation materials: CePd3 and YbCu2Si~. The
structure is consistent with energy-dependent scattering of electrons off a resonant level
whose width and position (relative to the Fermi level) are roughly comparable. No such
structure is observed in the integral-valent materials YPd3, DyPd&, and LuCu2Si2. The
valence-fluctuation compounds CeCu2Si2 and CeA13 do not show a resonance above 4 meV.

PACS numbers: 78.30.Er

In this Letter we report far-infrared optical-
absorption measurements at photon energies be-
tween 4 and 40 meV in the valence-fluctuation

compounds Ceded, and YbCu, Si,. Both compounds
show a broad absorption feature at low tempera-
ture, which we attribute to electron scattering
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