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of Ising Models for d ) 4
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It is rigorously proved that the continuum limits of Euclidean yq lattice fields are free
fields in d & 4. An exact geometric characterization of criticality in Ising models is in-
troduced, and used to prove other mean-field features for d & 4 and hyperscaling in d = 2.

PACS numbers: 03.50.—z, 05.50.+q, 11.10.—z.

(I) The main result. —A constructive approach to the Euclidean p, ' field (in B ) is to define it as a
continuum limit of lattice fields, with the distribution

Q(d p„)exp[- Z'(X,p„'+B,p„') + Q ~t Jp„p,]/norm.
x Ix-s I t

The field's "Schwinger functions" are constructed
as rescaled correlation functions

S (coutiuuutu)
(

iim &n(+ . , + )(lattice)
(n )

In our notation the (cubic-) lattice spacing is fixed
as 1. On the scale of the continuum the spacing
is 1/tl. The bare parameters )t„B» J, and &

are varied (renormalized), in the one-phase re-
gion, to ensure that the two-point function con-
verges, as a density of a measure, to a locally
integrable limit. [Since S,( ~ ~ ) ~0, local integra-
bility means that for every finite Bf~ „~&sS,(r) dx
( oo, ]

This Letter is a report on some rigorous re-
sults, which answer the question whether the
above procedure can lead, in high dimensions, to
a field with action of order higher than 2, that is,
one which is not Gaussian (i.e., a "generalized
free field" ). As I show, ' in more than four dimen-
sions the answer is negative [as opposed to the

"superrenormalizable" cases d =2, 3 (Ref. 2)].
The proof is by a nonperturbative analysis

which is based on a new (exact) geometric charac-
terization of critical phenomena in the Ising mod-
el and related systems, one of which is the p4

field. In these systems the fields, or spins, are
correlated by means of associated currents, in a
representation which is similar to one which has
been used to generate "high-temperature expan-
sions. " The "triviality" of the continuum field
theory is presented as a consequence of the fact
that in more than four dimensions random cur-
rents miss each other, resembling, in this re-
spect, Brountian Paths. (This intuition is some-
what related to ideas of Symanzik, ' of which I was
made aware by T. Spencer. ) The concrete analy-
sis of these systems is simple because of new
correlation inequalities which are derived with
use of probabilistic- geometric arguments.

The p„4 field is closely related to the ferromag-
netic Ising model, which consists of spin vari-
ables o„=+1, xEZ", with the equilibrium proba-
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bility distribution proportional to

exp[&
"2gJ„,o„o,] =- exp[-13'(v)]

weights of the configurations are

M (n) = II(PJ„)"&/n, !.

(with J„,~ 0 of finite range, and zero magnetic
field). For low values of the inverse temperature
p, the correlation (v„vP) has an exponential decay
characterized by the "mass gap,

" defined by
maximizing the values of m for which (o„v,)
~ constexp(-m ~x -y ~). For d - 2 there is a cri-
tical P, & ~, such that the correlation length $ =m '
diverges as P& P, . Near the critical point, one
obtains interesting continuum limits with use of
an analog of (2), e.g. , with

q=&(P), ~ =(v.v~& "'. (4)

exp(P J,v„v,) = Z (v. v,)"'(PJ )"'/no!
ny 0,12.~ ~

and averaging over [v„},one arrives at the rela-
tion

Z~ = Q u(n). (5)
On =8

n ={n,}represents an assignment of integers, to
be regarded as ftuxes, to the various bonds.

8n=fx~AIII(-I)" =-I}

is the set of sources (=sinks), modulo 2, for a
given current n, g is the empty set, and the

For the nearest-neighbor interaction (and, gen-
erally, systems for which an '*infrared bound" is
obeyed) I show that the last limit is Gaussian, if
d&6. The proof for dimensions 4&4 ~ 6 is re-
duced to the verification that (v, v~) ~ const~ / ~

!"2)

—a generally conjectured property of the two-
point function (i.e., the critical exponent q =0) for
d &4. The reason that the implications seem
stronger for the p field theory than for the Ising
model is that in the former case one considers
only limits in which 82 is locally integrable. While
regularity at short distance has not been proven
for the special limit (4) this limit is certainly
natural from the point of view of statistical me-
chanics. Other results for d&4, and one for d =2,
are described at the end of this Letter.

(2) An exact relation of long range ord-er to
percolation of currents. —Referring to pairs of
sites as bonds, b —= (x,y}, the partition function
for the Ising models described by (3), in a finite
region A, is

gA -2- I g exp( g PJ,v„v,).
a„=a1 b ~(x, y)

Expanding, for each bond

Applied to the correlation functions, i.e., ther-
mal averages of v„=II„e„v„,this procedure
yields

(v~& = 2 ~~ (n)/ 2 u (n). (6)
On =A On ~8

Thus —ln(vA) is a measure of the increase in the
free energy, of the system of currents, due to
the creation of sources at A. .

For small P the predominant contribution to the
sum in (5) comes from currents consisting of only
"local loops, "whereas each term in the numera-
tor for (v„v,) has to contain a current linking the
pair of sources (x,y}. This observation has been
used to generate "high-temperature expansions. "
While it has been expected that the phase transi-
tion of the model is somewhat related to the for-
mation of infinitely long currents, an exact rela-
tion of this kind was established in Ref. 1.

New geometric aspects of the model are un-
covered by introducing a duplicate system of in-
dependent currents n, and n» each having the dis-
tribution described above. We decompose the set
of sites to clusters which are connected by bonds
on which n1+n, &0, and denote byx =y the event
that x andy belong to the same cluster. Using a
simple combinatorial argument (lemma l of Ref.
4) we prove' the following relations:

(x, x, ) = P rb b (x =y
8n~ =g'
'"2-

(v, vg) (v~vp)

= (x,x,)Prob(x =x '"2-

Both expressions refer to the (normalized) prob-
ability that the sites x and y are connected by n,
+~n, in the duplicate system of two independent
currents, each of which has only the specified
sources.

Equations (7) and (8) extend to the infinite-vol-
ume limit. A striking aspect of (7) is that it pro-
vides a generally valid exact identification of the
onset of the long-range order, characterized by

lim!„! „(o„v„)&0, as a phenomenon of percola
tion in the associated system of duplicated cur-
rents.

(3}A representation of the p' lattice model
The relation of the y' field to the Ising model
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which is used in Ref. 1 is embedded in the Simon-
Griffiths' method of representing the single-site
measure exp[ —(A.,y4+B,y')]dp norm as a limit-
ing distribution of the variable y'"'=(12k.,) '~'

xN ~'g" o'"', with N-~, where o'"' are Ising
spins with the mean-field Hamiltonian

H= —[(2N) ' —B (12k.jV') ' '] g o'"'&' '
O. ,h= 1

(at P=1).
Thus, the y' lattice field is the limit, as N -~,

of a system of Ising spins, (o„' )j, xaZ', n =1,
. . ., N, with a ferromagnetic pair interaction o

range 1 (lattice spacing) which is independent of
the index e. If one regards the sites x as repre-
senting blocks of a larger lattice (with the inter-
nal coordinate n), the above system may be
viewed as a "local-mean-field" approximation,
and the convergence to y' is somewhat reminis-
cent of the Landau-Ginzburg theory. The exact
details are not relevant for our analysis.

In the above formalism, the correlations of the
spins c„' ' are expressed by means of the associ-
ated currents which link the "microscopic" points
(x, n). As a generalization of (8) we have the fol-
lowing bound' on the probability that the currents
link a source with soppge point in the "block" z:

Prob ~ ~ z 1 & ~ ( ~ (N)@ (N) ~ (N)~ (N) ~ (N) ~ (N)
@

(N)2

( ), represents average with respect to the single-site measure (i.e. , g=-0).
(4) 7'he c«tinuum limit. (a) Heuristics. The cons—ideration of currents offers an intuitive exp!ana, -

tion of the "triviality" (for d &4) of the scaling limits of the models considered here. First an intriguing
feature of the current n, +n~ should be pointed out. The size of the connected cluster g„,„(0)=(x~x
=0] can be expressed, with use of (7), as ( ~ C„,„(0)~) =g prob(x=0) =Q(o,o ) 2.
bound' (which holds for the nearest-neighbor interaction) implies that in more than four dimensions
this quantity is uniformly bounded from above for p ~ p . Since by (7) the current n, +n, does span a
dense infinite cluster if )8 & p„we learn that the expected size of the cluster remains uniformly bound-
ed even at the percolation threshold!

Consider now (o„~~ ~ o„) for 2n widely separated points (the odd correlations vanish). It is ex-
pressed in (8) by a sum over currents with sources at these sites. For each such current one may
organize the sources into n linked pairs. If the (long) linking currents intersect, the pairing is not
unique. However, we have just seen that for d &4, even at p= p„ the system does not favor long cur-
rents, except of course for those imposed by the separate sources. Furthermore, it may be expected,
on the basis of analogy with the behavior of paths of the Brownian motion, that for d &4 these long cur-
rents miss each other. (The intersection properties, for which d =4 is the critical dimension, are
better understood if one observes that the trail left behind a Brownian path has "dimension" tao. ) If
the effects of distant currents factorize, we should obtain

(o„~o„)= g (o„, o„) (o„o„)+correction,
pairings 'n &n

(10)

with a small correction due to the interaction of the long currents. Indeed we prove that for d &4 the
correction is insignificant at large separations, leaving (10) in the form which (by Wick s theorem, and
its converse) characterizes Gaussian variables.

(b) New con elation inequality. —For n =2 the correction in (10) is, by definition, the truncated corre-
lation function (for the one-phase region, (o'„)=0)

u,(x„x„x„x,) = ( o„.~ o„)—t' (a„o„)(o„o„)+ (o„o„)(o„o„)+ (o„o, ) ( o, o„)].1 4 1 2 3 4 1 3 2 4 1 4 2 3

The considerations which lead to (7) and (8) permit us to perform exact cancellations. The result is
the identity'

x (x„.. . , x )= —2(v, v, )(v, v, )prob(x, x, sn, =(x„x,)
1 2 3 4 X3y X4

(12)

(and a similar identity which is manifestly symmetric).
Equation (12) implies the I ebowitz inequality u, ~0; however, it also leads to lou)er bounds on u, .
sing inequalities which at certain place overestimate the probability that two clusters intersect by
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e expected size of the intersection, we derive the following new correlation inequality for the y'
lattice systems and Ising models' (where y„, y„' are replaced by o„, 1):

I ~,(x„,x,) I-2&(y„y, ) &y„y, & &q „,y,&(y„y, )/(y, '&,'. (13)

(c) "Triviality" of @„'for d &4.—Using (13) and
the known properties of the two-point function,
(goy„), one may show that for any scaling of the
bare parameters (in the single-phase region),
the limiting y field theory is inevitably a Gaus-
sian field (i.e., a, "generalized free field" ),
assuming the limit (2) exists and is locally inte-
grable. (It suffices' to prove u, '"""'""'=-0.)

The complete proof is deferred to Hef. 1. How-
ever, it is instructive to consider here the (di-
mensionless) renormalized coupling constant g
= l~, l/(x'&'), ~h~~~ l~, l =Z I ~,(0,x., x., x.) I and
)(=Z & yoq, & By (13): I u4I - 2)( /& y.'&O'. This
inequality allows the completion of the analysis
of Glimm and Jaffe, ' who proved a universal
upper bound on g. Using the bound of Sokal
2dl)J(y, ') &e™,and' )(~(1+/)/(const PJ), one
obtains

g ~ const/$" ' = 0 for d & 4. (14)

More detailed arguments also show that in the
limit (2), assuming local integrability, o.'u, ( '"
(x„7),. . . ,x4q)- 0 as O(q (' ')). (I am grateful
to J. Frohlich for a stimulating discussion of this
point. )

(5) Results fox Ising models For th.—e nearest-
neighbor Ising model, and others with similar
infrared behavior, (14) implies that, indeed,
hyperscaling is not valid for d &4 (see also Sec.
1). Another prediction of the mean-field approxi-
mation, namely the critical-exponent value y = 1,
is proved for such models by showing that for p
&p,

with some e(J) &0, for d&4. The lower bound has
already been derived by Glimm and Zaffe. The
new upper bound holds whenever Q (U, U, )' is
finite at T, . The last condition played a role also
in the proof of the finiteness of the specific heat
at T, +0 Io

In the other direction, for d=2 we prove that
for any ferromagnetic interaction, J„,= J(lx —yl),

of range R (with (,=-glx" +x"'I &U, U„&/)(),

(16)

This lower bound is an easy consequence of the
fact that in two dimensions it is quite natural for
two currents to intersect. Taking the logarithm
of the left side of the inequality (16), we see that
the corresponding sum of the critical exponents
is exactly zero (hyperscaling). The vanishing of
the lower bound when R —~ is consistent with the
expectation that spreading the interaction should,
in a certain respect, lead to the mean-field limit,
without affecting the critical exponents.

(6) Othe+ applications. The bas—ic approach
exposed here is applicable also to other systems
which may include (i) external fields of either
sign (including the problem of the roughening
transition), (ii) antiferromagnetic interactions,
and (iii) interactions of higher order, e.g. , the
g(2) lattice gauge model. In the above cases one
is naturally led to consider properties of random
surfaces —which are not yet well understood.
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