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Chaos in the Einstein Equations
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A very general cosmological solution to Einstein s equations exhibiting sensitive de-
pendence on initial data is analyzed as a dynamical system. The metric and topologic
entropies of the one-dimensional Poincare map are determined and various results in
number theory employed to calculate other invariants of the

' chaotic" cosmological
dynamics .

PACS numbers: 04.20.Jb, 02.50.+ s, 95.30.Sf, 98.80.Dr

Until only recently physicists believed that the
presence of random or chaotic behavior in dynam-
ical systems always derived from random initial
data, stochastic forcing, or the excitation of a
very large number of degrees of freedom. Al-
though any of these are sufficient to generate ob-
servable chaos in a dynamical system, it is now

known that none are necessary. ' Deceptively sim-
ple recursive systems, notably iterated maps of
the unit interval, display behavior which, al-
though deterministic, is so sensitive to the initial
data that for all practical purposes it is unpre-
dictable. This Letter reports some applications
of these mathematical developments to general
relativistic cosmologies. We shall determine
nonzero metric and topologic entropies' for the
Poincarb return map of a generic homogeneous
cosmological model which exhibits a sensitive de-
pendence on initial conditions under evolution by
the Einstein equations.

The clearest example of chaotic dynamics is
provided by the diagonal Bianchi type-IX or
"Mixmaster" universe. This was first investigat-
ed by Misner' although we shall employ the in-
sights of Belinskii, Khalatnikov, and Lifshitz in
our formulation. The three essential Einstein
equations for the evolution of the orthogonal ex-
pansion scale factors are given by"

(lna')" =(b'-c')'-a'
and cyclic permutations,

where the prime denotes e, =ance„with t the
proper time. . The system (1) generates a flow,

g„ in the phase space. In order to discretize
the evolution, one constructs the Poincarb map'
of intersections g, Cl 6' where 6' is a (2 -d)-dimen-
sional hypersurface in the phase space. This se-
quence of intersections u» u» .. ., u„ forms the
Poincarb map. Belinskii, Khalatnikov, and Lif-
shitz' have shown that the evolution of (1) is char-
acterized by a sequence of states lying close to
different Kasner space-times (closed orbits),

each parametrized by some real number u. The
evolution passes through successive states in
which the expansion rates in orthogonal direc-
tions, P» P„and p„satisfy algebraic identities
Qp, =Pp, ' = 1. The p, can be uniquely' param-
etrized as p, (u) for uc (1,~). If the initial state
is characterized by an irrational number u„ then
evolution proceeds via successive small oscilla-
tions close to the Kasner states coded by u, —1,
u0-2, . . . , etc. , until the integer part of up is
exhausted. A new cycle of small oscillations then
commences in which the initial state is coded by
u, =1/(u, —[u,]), where [ ~ ) denotes the integer
part thereof. An infinite number of these oscilla-
tions occur in (O, f) and the number of small oscil-
lations, k„, occurring within the rth cycle, is giv-
en by the zth partial quotient in the infinite con-
tinued-fraction expansion (cfe) of the arbitrary
irrational u, —= (k„k„... , k„, . ..]. The Poincarh
map is therefore one dimensional and there is a
sensitive dependence on initial conditions: Two
Mixmaster universes beginning arbitrarily close
to each other will diverge exponentially fast as
they evolve. To make this notion precise we note
that the return map is equivalent to the piecewise-
continuous map T: [0, 1]~ given by

x„„=T(x„)=x„'-[x„'], x„e 0.

Also, T (0)-=0 and if k„=-[x„']then the cfe of x, is
(k„k„.. . ,k„,. . .). The map T possesses an in-
finite number of discontinuities at y ', y& Z'. In
analytic form,

T(x)=x ' r; xe-(1/(r+1), 1/r).

We shall be interested in the stationary proper-
ties of T" when n is large. Although T does not
preserve the Lebesgue measure g, it does' pre-
serve a measure po which is absolutely continu-
ous with respect to X. If p, is invariant then p, (A)
= p, (T 'A) for any measurable set A, and for 0
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&gk(1

p, (0)dg = g p, (x,)dx„,
k=1

where
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(4) x„„-=T, (x„)=x„'—[x„'+e],
x&[-c, l-c],

(12)

space-time. If we alter the Poincarb map by a
constant ~ &0 to

So

x„=(e+h)- '.

t.(0)=(I/»2)g(~ h) '~.(I/(~ h))
k= 1

= I/(8+ 1) ln2

(5)

(6)

then a smooth invariant measure p. , still exists
which is absolutely continuous with respect to x.
The metric entropy increases logarithmically
with e until e -0.38 a,nd then remains constant to
e =0.5. For 0~ e ~ (3 —~5/2,

is the unique normalized invariant measure' for
T. The existence of po characterizes the Mix-
master universe as a measurable dynamic sys-
tem. Its chaotic behavior is a property of the
elements (T, p, ,). If w„(y, x) is the joint probabil-
ity that T"(x,) =x and T" '(x,) =y, then the infor-
mation loss" under iteration by T is

I(x) = — g n (y, x)1 go, m(y, x).
&~ r- 1(~)

The expectation of information loss over the
measure po is the tÃeA"tc (otK )e'nA"op'J-, h(T
p, ). A system is chaotic" if h(T, p, ) &0; roughly
speaking, neighboring trajectories diverge like- exp{hn) on the average. So,

h(T, p, ) = f,'1(x)p, (X)dx.

Now

v(x, x) = IT'{x)l 'vo(y)/vo»

and thus

h (T, v.) = f 'u. (x) log. l T'(x)ldx

2 "' lnx
(ln2)', 1+x 6(ln2)'

This single number, h(T, p, ,) = 3.4237. . . , invari-
antly characterizes the ergodic features of the
Mixmaster universe. It is a comparatively large
entropy, nearly five times larger than the I o-
rentz strange attractor. ' Note that the entropies
of the Kasner and Bianchi type-II universes which
approximate the evolution of (1) over intervals
containing zero and single turning points of a, b, c,
respectively, "during a cycle are zero. It is the
cycle-to-cycle evolution that generates informa-
tion, not the small oscillation (u-u —1) phase in
which T' is unity and (10) vanishes.

In view of the sensitivity of the function T(x)
one must ask what the consequences of a small
error in its specification would be. This might be
equivalent to examining the dynamics of a slightly
perturbed Mixmaster universe or a "neighboring"

h-(T „p,) =h (T,p, ) ln2/ln(2 —e). (13)

log, [N(e, n)]
E~O ll~ 'o n

(14)

Roughly speaking, the memory of initial condi-
tions is lost after -H ' iterations. The number
of orbits of T can be calculated by using standard
results in continued-fra, ction theory. " As the
number, z, of partial quotients in the cfe of an
irrational xo is increased, so the better the ra, -
tional approximation for xo that is obtained by
truncating the continued fraction after y terms.
If p„and q„are the (relatively prime) numerator
and denominator of this approximant then q„
& 2 " '&" and the number of orbits separated by a
distance exceeding e„=-q„'(q,+q, ,) ' is q„(q„

The study of more general entropy-increasing
perturbations may offer clues to the generic be-
havior of the Einstein equations. '

It can also be shown that the map T possesses
very strong statistical properties derived from
the Einstein equations (1). It possesses the yeah
Bexnoulli property, "and so cannot be finitely ap-
proximated. This implies that it is strongly mix-
i~,"and so for any measurable sets A and B the
ma.p T"A tends, as n-~, to occupy the same
fraction of B as it does of the whole space of pos-
sibilities. This in turn implies the weaker prop-
erty of ergodicity, that is, the Mixmaster even-
tually gets arbitrarily close to all possible Kas-
ner universes. " T contains no strange attractor.

Another invariant dynamical entropy exists for
the Mixmaster return map T alone [rather than
the pair (T, p)]. The topologi, c entropy, H(T), is
a measure of the number of orbits" of T. An or-
bit is an iterative sequence (x„T(x,) ~ ~ ~ T"(x,),
.. . ). If we denote the maximum number of differ-
ent orbits of T for x,&[0, 1] which are separated
by distance exceeding e after n iterations of T as
N(e, n), then
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+q, ,). Since e„-0 as k- ~, we have, by (14),

H(T) =lim 21
n~ p$1Q2

By a theorem of Levy is it is known that for al-
most every x, the limit of (q„)'~" as n-~ equals
exp(m'/12 ln2); thus

H(T) = v'/6(ln2)'. (16)

Since pp is the unique invariant measure" we
have equality of h and H for T. The metric en-
tropy is also equal to the Lyapunov characteristic
exponent (LCE) for T and its numerical value can
be compared with those of other chaotic sys-
tems. "p'p

It is also possible to calculate the LCE's for
some other aspects of Mixmaster evolution. Sup-
pose we examine the rate at which the logarith-
mic amplitude of the oscillations increases from
cycle to cycle as t -0 (~-~). If we denote the
ratio of max(a', b', c') to min(a', 5', c') in the
xth cycle by 6„ then the LCE is defined as A,
where"

ink~= k, 'k, ' k„2 in+ -=exp(Ar) +. (16)

Remarkably, the Khinchin theorem"" proves
that, for almost every u with a cfe (k„k„.. .,
k„, . . .), the geometric mean (unlike the arith-
metic mean) of the (k; }converges to a universal
constant, X, such that

lim (kP ' k )'~"
n~~

Q [(r~ 1)2/r(r+ 2}]1nr/ln2

t' =1
(19)

The infinite product converges slowly to X
=2.68545. .. . Therefore the LCE is given by
lnX' = 1.975. .. . There exist interesting mem-
bers of the set of zero measure for which (19) is
false: For example, e=(2, 1, 2, 1, 1, 4, 1, 1, 6, . . .)
has

If H(T) and k(T, p) both exist for a (1-d}-di-
mensional map T, then H(T) is the maximum met-
ric entropy"

H(T) =sup(k(T, p)).

What is the physical origin of the chaotic dy-
namics that are evidenced by the nonzero entropy
of the Einstein equations, (1)7 The Mixmaster
universe represents the evolution of gravitational
waves with sufficient degrees of freedom to allow
the spatial three-curvature to be anisotropic. As
the gravitational waves move they generate this
three-curvature anisotropy which has a backre-
action upon their motion. The curvature anisot-
ropy is entirely general relativistic in origin,
and the immediate cause of the nonzero entropy
of the Poincafe map. Although not yet studied by
dynamicists, general-relativistic systems are
anticipated to possess more spectacular chaotic
behavior than classical ones because of the unique
self-interacting nonlinearity of Einstein's theory.
Whereas all other physical theories merely pro-
vide equations which describe the interaction of
fields or particles on some fixed and preassigned
space-time geometry, general relativity is differ-
ent. The motion of fields and particles actually
determine the general-relativistic space-time on
which they interact.

A more detailed account of these and other in-
vestigations will be published elsewhere. Other
dynamical aspects of general-relativistic cosmol-
ogies will be examined; in particular, the geo-
desic flow on backgrounds with anisotropic nega-
tive curvature. A comparative measure of the
generality of space-times can be constructed by
evaluating their metric entropies. " Finally, the
investigations reported here, together with the
relation between the dynamical entropy of the
geodesic flow and the space-time curvature in-
variants, may allow a rigorous formulation qf
Penrose's notion" of "gravitational entropy. '

This, in turn, may prove fruitful in furthering
our understanding of intrinsically thermodynamic
aspects of nonstationary gravitational fields.
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lim (k,(e) k (e))' "~n' '
f/~ oo

(20)

Mixmaster trajectories chosen close to Qp 8
will be observed to diverge from it more rapidly
than an exponential. Since 1nb,„r"in+, the LCE
would be infinite.
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